前言
客户说,生产系统最近CPU使用率经常达到100%,请DBA帮忙调查一下。
根据客户提供的情况描述及对应时间段,我导出AWR,发现如下问题:
11v41vaj06pjd
:每次执行消耗2,378,874.14 buffer
约等于18g 内存
bsfrz471nh9s4
:每次执行消耗1,545,875.18 buffer
约等于12g 内存
非常大的内存消耗,而且执行频率高。
所以就断定这两条sql就是cpu使用率高的祸源,只要优化这两条sql,cpu必然而然的降下来。
优化前
这两条sql的结构是一样的,只是表连接有所不同,所以优化方法都是一致的。
update mm_writeoutstatus_to s
set s.status = '00'
where s.status = '0Z'
and s.id in (select distinct t.id
from mm_writeout_to t, mm_paymentin_events_td p
where exists (select 1
from mm_paymentin_events_td m,
mm_paymentin_events_td m1
where m.newno = 1420467997
and m.fatherno = m1.listno
and m1.sonno = p.listno)
and t.businessno = p.newno);
Execution Plan
----------------------------------------------------------
Plan hash value: 393324829
--------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------------------------------------
| 0 | UPDATE STATEMENT | | 1 | 21 | 4437 (1)| 00:00:54 |
| 1 | UPDATE | MM_WRITEOUTSTATUS_TO | | | | |
|* 2 | FILTER | | | | | |
| 3 | TABLE ACCESS BY INDEX ROWID | MM_WRITEOUTSTATUS_TO | 789 | 16569 | 96 (0)| 00:00:02 |
|* 4 | INDEX RANGE SCAN | IDX_WRITEOUTSTATUS_TEST | 789 | | 6 (0)| 00:00:01 |
| 5 | NESTED LOOPS | | 1 | 52 | 11 (0)| 00:00:01 |
| 6 | NESTED LOOPS | | 1 | 38 | 9 (0)| 00:00:01 |
| 7 | NESTED LOOPS | | 1 | 27 | 7 (0)| 00:00:01 |
| 8 | TABLE ACCESS BY INDEX ROWID| MM_WRITEOUT_TO | 1 | 18 | 3 (0)| 00:00:01 |
|* 9 | INDEX UNIQUE SCAN | PK_MM_WRITEOUT_TO | 1 | | 2 (0)| 00:00:01 |
|* 10 | TABLE ACCESS BY INDEX ROWID| MM_PAYMENTIN_EVENTS_TD | 1 | 9 | 4 (0)| 00:00:01 |
|* 11 | INDEX RANGE SCAN | IDX_PAYMENTINE_08 | 4 | | 2 (0)| 00:00:01 |
|* 12 | TABLE ACCESS BY INDEX ROWID | MM_PAYMENTIN_EVENTS_TD | 1 | 11 | 2 (0)| 00:00:01 |
|* 13 | INDEX UNIQUE SCAN | PK_MM_PAYMENTIN_EVENTS_TD | 1 | | 1 (0)| 00:00:01 |
|* 14 | TABLE ACCESS BY INDEX ROWID | MM_PAYMENTIN_EVENTS_TD | 1 | 14 | 2 (0)| 00:00:01 |
|* 15 | INDEX UNIQUE SCAN | PK_MM_PAYMENTIN_EVENTS_TD | 1 | | 1 (0)| 00:00:01 |
--------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - filter( EXISTS (SELECT 0 FROM "MM_PAYMENTIN_EVENTS_TD" "P","MM_WRITEOUT_TO"
"T","MM_PAYMENTIN_EVENTS_TD" "M1","MM_PAYMENTIN_EVENTS_TD" "M" WHERE "M"."NEWNO"=1420467997 AND
"M"."FATHERNO" IS NOT NULL AND "M"."FATHERNO"="M1"."LISTNO" AND "M1"."SONNO" IS NOT NULL AND
"T"."ID"=:B1 AND "M1"."SONNO"="P"."LISTNO" AND "P"."NEWNO"=TO_NUMBER("T"."BUSINESSNO")))
4 - access("S"."STATUS"='0Z')
9 - access("T"."ID"=:B1)
10 - filter("M"."FATHERNO" IS NOT NULL)
11 - access("M"."NEWNO"=1420467997)
12 - filter("M1"."SONNO" IS NOT NULL)
13 - access("M"."FATHERNO"="M1"."LISTNO")
14 - filter("P"."NEWNO"=TO_NUMBER("T"."BUSINESSNO"))
15 - access("M1"."SONNO"="P"."LISTNO")
Statistics
----------------------------------------------------------
1 recursive calls
0 db block gets
1830312 consistent gets
154 physical reads
0 redo size
830 bytes sent via SQL*Net to client
1240 bytes received via SQL*Net from client
3 SQL*Net roundtrips to/from client
2 sorts (memory)
0 sorts (disk)
0 rows processed
分析
执行计划中有走filter关键字,且有两个子级,我们都知道,走这种连接方式是非常耗费性能的,主表返回多少行,被驱动表就得被扫描多少次。
利用merge into 可以等价改写update语句。
优化后
merge into mm_writeoutstatus_to s
using (select distinct t.id
from mm_writeout_to t, mm_paymentin_events_td p
where exists (select 1
from mm_paymentin_events_td m,
mm_paymentin_events_td m1
where m.newno = 1420467997
and m.fatherno = m1.listno
and m1.sonno = p.listno)
and t.businessno = p.newno)b
on (s.id = b.id)
when matched then
update set s.status = '00' where s.status = '0Z'
Execution Plan
----------------------------------------------------------
Plan hash value: 1386952490
------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------------------------------------------
| 0 | MERGE STATEMENT | | 1 | 59 | 9822 (1)| 00:01:58 |
| 1 | MERGE | MM_WRITEOUTSTATUS_TO | | | | |
| 2 | VIEW | | | | | |
| 3 | TABLE ACCESS BY INDEX ROWID | MM_WRITEOUTSTATUS_TO | 1 | 53 | 3 (0)| 00:00:01 |
| 4 | NESTED LOOPS | | 1 | 66 | 9822 (1)| 00:01:58 |
| 5 | VIEW | | 1 | 13 | 9819 (1)| 00:01:58 |
| 6 | SORT UNIQUE | | 1 | 52 | 9819 (1)| 00:01:58 |
|* 7 | HASH JOIN | | 1 | 52 | 9818 (1)| 00:01:58 |
| 8 | NESTED LOOPS | | 1 | 34 | 9 (0)| 00:00:01 |
| 9 | NESTED LOOPS | | 1 | 20 | 7 (0)| 00:00:01 |
|* 10 | TABLE ACCESS BY INDEX ROWID| MM_PAYMENTIN_EVENTS_TD | 1 | 9 | 5 (0)| 00:00:01 |
|* 11 | INDEX RANGE SCAN | IDX_PAYMENTINE_08 | 4 | | 3 (0)| 00:00:01 |
|* 12 | TABLE ACCESS BY INDEX ROWID| MM_PAYMENTIN_EVENTS_TD | 1 | 11 | 2 (0)| 00:00:01 |
|* 13 | INDEX UNIQUE SCAN | PK_MM_PAYMENTIN_EVENTS_TD | 1 | | 1 (0)| 00:00:01 |
| 14 | TABLE ACCESS BY INDEX ROWID | MM_PAYMENTIN_EVENTS_TD | 1 | 14 | 2 (0)| 00:00:01 |
|* 15 | INDEX UNIQUE SCAN | PK_MM_PAYMENTIN_EVENTS_TD | 1 | | 1 (0)| 00:00:01 |
| 16 | TABLE ACCESS FULL | MM_WRITEOUT_TO | 1124K| 19M| 9797 (1)| 00:01:58 |
|* 17 | INDEX RANGE SCAN | IDX_WRITEOUTSTATUS_1 | 1 | | 2 (0)| 00:00:01 |
------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
7 - access("P"."NEWNO"=TO_NUMBER("T"."BUSINESSNO"))
10 - filter("M"."FATHERNO" IS NOT NULL)
11 - access("M"."NEWNO"=1420467997)
12 - filter("M1"."SONNO" IS NOT NULL)
13 - access("M"."FATHERNO"="M1"."LISTNO")
15 - access("M1"."SONNO"="P"."LISTNO")
17 - access("S"."ID"="B"."ID")
Statistics
----------------------------------------------------------
1 recursive calls
0 db block gets
54083 consistent gets
0 physical reads
0 redo size
832 bytes sent via SQL*Net to client
1281 bytes received via SQL*Net from client
3 SQL*Net roundtrips to/from client
2 sorts (memory)
0 sorts (disk)
0 rows processed
------------------------------------------------------------------------------------------------------------------------------
优化前每次执行需要1830312 次逻辑读,优化后每次执行需要54083 次逻辑读,性能提升33.8倍