题目链接:http://poj.org/problem?id=3680
思路:因为N<=200,而区间范围为【1,100000】,因此需要离散化,去重,然后就是建图了相连两点连边,容量为k,费用为0,然后就是对区间端点进行连边,容量为1,费用为权值,最后就是跑费用流了。
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<queue> 6 using namespace std; 7 #define MAXN 444 8 #define MAXM 444444 9 #define inf 1<<30 10 11 struct Edge{ 12 int v,cap,cost,next; 13 }edge[MAXM]; 14 15 int vs,vt,NE,n,m; 16 int head[MAXN]; 17 18 void Insert(int u,int v,int cap,int cost) 19 { 20 edge[NE].v=v; 21 edge[NE].cap=cap; 22 edge[NE].cost=cost; 23 edge[NE].next=head[u]; 24 head[u]=NE++; 25 26 edge[NE].v=u; 27 edge[NE].cap=0; 28 edge[NE].cost=-cost; 29 edge[NE].next=head[v]; 30 head[v]=NE++; 31 } 32 33 int pre[MAXN],cur[MAXN]; 34 int dist[MAXN]; 35 bool mark[MAXN]; 36 bool spfa(int vs,int vt) 37 { 38 memset(mark,false,sizeof(mark)); 39 fill(dist,dist+vt+1,-inf); 40 dist[vs]=0; 41 queue<int>que; 42 que.push(vs); 43 while(!que.empty()){ 44 int u=que.front(); 45 que.pop(); 46 mark[u]=false; 47 for(int i=head[u];i!=-1;i=edge[i].next){ 48 int v=edge[i].v; 49 if(edge[i].cap>0&&dist[u]+edge[i].cost>dist[v]){ 50 dist[v]=dist[u]+edge[i].cost; 51 pre[v]=u; 52 cur[v]=i; 53 if(!mark[v]){ 54 mark[v]=true; 55 que.push(v); 56 } 57 } 58 } 59 } 60 return dist[vt]!=-inf; 61 } 62 63 int MinCostFlow(int vs,int vt) 64 { 65 int flow=0,cost=0; 66 while(spfa(vs,vt)){ 67 int aug=inf; 68 for(int u=vt;u!=vs;u=pre[u]){ 69 aug=min(aug,edge[cur[u]].cap); 70 } 71 flow+=aug,cost+=dist[vt]*aug; 72 for(int u=vt;u!=vs;u=pre[u]){ 73 edge[cur[u]].cap-=aug; 74 edge[cur[u]^1].cap+=aug; 75 } 76 } 77 return cost; 78 } 79 80 struct Line{ 81 int u,v,w; 82 }line[MAXN]; 83 84 int num[MAXN]; 85 86 int main() 87 { 88 // freopen("1.txt","r",stdin); 89 int _case,cnt=0; 90 scanf("%d",&_case); 91 while(_case--){ 92 scanf("%d%d",&n,&m); 93 cnt=NE=0; 94 memset(head,-1,sizeof(head)); 95 for(int i=1;i<=n;i++){ 96 scanf("%d%d%d",&line[i].u,&line[i].v,&line[i].w); 97 num[cnt++]=line[i].u; 98 num[cnt++]=line[i].v; 99 } 100 sort(num,num+cnt); 101 cnt=unique(num,num+cnt)-num; 102 for(int i=1;i<=cnt;i++){ 103 Insert(i-1,i,m,0); 104 } 105 for(int i=1;i<=n;i++){ 106 int a=lower_bound(num,num+cnt,line[i].u)-num+1; 107 int b=lower_bound(num,num+cnt,line[i].v)-num+1; 108 Insert(a,b,1,line[i].w); 109 } 110 printf("%d ",MinCostFlow(0,cnt)); 111 } 112 return 0; 113 }