• Codeforces 1029 E. Tree with Small Distances(树上dp)


    题目直通车:http://codeforces.com/problemset/problem/1029/E

    思路大意:在树上做dp,依次更新ar数组,ar[i]表示以i为根节点的子树对答案的最小贡献值,依次更新即可,具体细节见代码

    /*
    13
    1 2
    1 3
    1 4
    4 5
    4 6
    4 7
    7 8
    7 9
    7 10
    10 11
    10 12
    10 13
    
    output:2
    */
    
    #include<iostream>
    #include<cstdio> 
    #include<cmath>
    #include<queue>
    #include<vector>
    #include<string.h>
    #include<cstring>
    #include<algorithm>
    #include<set>
    #include<map>
    #include<fstream>
    #include<cstdlib>
    #include<ctime>
    #include<list>
    #include<climits>
    #include<bitset>
    using namespace std;
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    #define fopen freopen("input.in", "r", stdin);freopen("output.in", "w", stdout);
    #define left asfdasdasdfasdfsdfasfsdfasfdas1
    #define tan asfdasdasdfasdfasfdfasfsdfasfdas
    typedef long long ll;
    typedef unsigned int un;
    const int desll[4][2]={{0,1},{0,-1},{1,0},{-1,0}};
    const ll mod=1e9;
    const int maxn=2e5+7;
    const int maxm=1e6+7;
    const double eps=1e-4;
    int m,n;
    int ar[maxn];
    vector<int> ve[maxn];
    int dis[maxn],ans,arTwo[maxn];
    int sum,maxx;
    //arTwo[i]表示i节点与1相连时,以i为根的子树中需要与1相连的个数
    //ar[i]表示以i为根节点的子树中需要与1相连的个数,即对答案的贡献值的最少值,dp更新ar即可
    int func(int u,int pre,int num){
        int mid=0;
        for(int i=0;i<ve[u].size();i++){
            int v=ve[u][i];
            if(v==pre)continue;
            if(num==2)mid += func(v,u,num-1);
            else mid+=ar[v];
        }
        return min(mid, ar[u]);
    }
    void dfs2(int u,int pre){
        for(int i=0;i<ve[u].size();i++){
            int v=ve[u][i];
            if(v==pre)continue;
            dfs2(v,u);
        }
        arTwo[u] = func(u,pre,2);
        ar[u]=arTwo[u]+1;//u节点与1相连的情况
        int sumMid=0,maxMid=-n;
        for(int i=0;i<ve[u].size();i++){//u节点的一个子节点与1相连的情况
            int v=ve[u][i];
            if(v==pre)continue;
            sumMid += ar[v];
            maxMid = max(maxMid, ar[v]-arTwo[v]-1);
        }
        if(sumMid==0)sumMid=1,maxMid=0;//特判子节点的情况
        ar[u] = min(ar[u], sumMid-maxMid);
    }
    void funcDfs(int u,int pre,int num){
        if(num==0){
            int mid=0;
            for(int i=0;i<ve[u].size();i++){
                int v=ve[u][i];
                if(v==pre)continue;
                mid+=ar[v];
            }
            ans += min(ar[u], mid);
            return ;
        }
        for(int i=0;i<ve[u].size();i++){
            int v=ve[u][i];
            if(v==pre)continue;
            funcDfs(v,u,num-1);
        }
    }
    
    int main()
    {
        scanf("%d",&n);
        fill(ar,ar+n+1,n);
        fill(arTwo,arTwo+n+1,n);
        for(int i=1;i<n;i++){
            int a,b;scanf("%d%d",&a,&b);
            ve[a].push_back(b);
            ve[b].push_back(a);
        }
        ans=0;
        dfs2(1,-1);
        funcDfs(1,0,2);
        printf("%d
    ",ans);
        return 0;
    }
  • 相关阅读:
    正则表达式
    运算符重载 hash原理 Equals方法
    接口 类型转换 try-catch(学习笔记)
    综合练习:词频统计
    组合数据类型综合练习
    Python基础综合练习
    熟悉常用的Linux操作
    大数据概述
    递归下降分析法
    有穷状态自动机
  • 原文地址:https://www.cnblogs.com/wa007/p/9566768.html
Copyright © 2020-2023  润新知