• 数据结构化与保存


    1. 将新闻的正文内容保存到文本文件。

    def writeNewsDetail(content):
        f = open('text.txt','a',encoding='utf-8')
        f.write(content)
        f.close()
    
    news['content'] = soupd.select('.show-content')[0].text.strip()
    writeNewsDetail(news['content'])

    2. 将新闻数据结构化为字典的列表:

    • 单条新闻的详情-->字典news
    • 一个列表页所有单条新闻汇总-->列表newsls.append(news)
    • 所有列表页的所有新闻汇总列表newstotal.extend(newsls)
    def getNewsList(pageUrl):
        res = requests.get(pageUrl)
        res.encoding = "utf-8"
        soup = BeautifulSoup(res.text, "html.parser")
        newsList = []
        for news in soup.select('li'):
            if len(news.select('.news-list-title')) > 0:
                newsUrl = news.select('a')[0].attrs['href']
                newsList.append(getNewDetail(newsUrl))
        return (newsList)
    
    newsTotal = []
    url = 'http://news.gzcc.cn/html/xiaoyuanxinwen/'
    newsTotal.extend(getNewsList(url))

    3. 安装pandas,用pandas.DataFrame(newstotal),创建一个DataFrame对象df.

    df = pandas.DataFrame(newsTotal)
    print(df)

    4. 通过df将提取的数据保存到csv或excel 文件。

    df.to_excel('wxc.xlsx')

    5. 用pandas提供的函数和方法进行数据分析:

    • 提取包含点击次数、标题、来源的前6行数据
    • 提取‘学校综合办’发布的,‘点击次数’超过3000的新闻。
    • 提取'国际学院'和'学生工作处'发布的新闻。
      print(df[(df['clickCount']>3000) & (df['source'] == '学校综合办')])
      print(df[['clickCount', 'title', 'source']].head(6))
      sou = ['国际学院', '学生工作处']
      print(df[df['source'].isin(sou)])
    import re
    import requests
    from bs4 import BeautifulSoup
    from datetime import datetime
    import pandas
    
    
    def writeNewsDetail(content):
        f = open('text.txt','a',encoding='utf-8')
        f.write(content)
        f.close()
    
    def getClickCount(newsUrl):
        newId = re.search('\_(.*).html',newsUrl).group(1).split('/')[1]
        clickUrl = "http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80".format(newId)
        return (int(requests.get(clickUrl).text.split('.html')[-1].lstrip("('").rstrip("');")))
    
    def getNewDetail(newsUrl):
        resd = requests.get(newsUrl)
        resd.encoding = 'utf-8'
        soupd = BeautifulSoup(resd.text, 'html.parser')
        news = {}
    
        news['title'] = soupd.select('.show-title')[0].text
        info = soupd.select('.show-info')[0].text
        news['dt'] = datetime.strptime(info.lstrip('发布时间:')[0:19], '%Y-%m-%d %H:%M:%S')
        if info.find('来源:')>0:
            news['source'] = info[info.find('来源:'):].split()[0].lstrip('来源:')
        else:
            news['source'] = 'none'
        news['content'] = soupd.select('.show-content')[0].text.strip()
        writeNewsDetail(news['content'])
        news['clickCount'] = getClickCount(newsUrl)
        return (news)
    
    def getNewsList(pageUrl):
        res = requests.get(pageUrl)
        res.encoding = "utf-8"
        soup = BeautifulSoup(res.text, "html.parser")
        newsList = []
        for news in soup.select('li'):
            if len(news.select('.news-list-title')) > 0:
                newsUrl = news.select('a')[0].attrs['href']
                newsList.append(getNewDetail(newsUrl))
        return (newsList)
    
    def getpageN():
        res = requests.get('http://news.gzcc.cn/html/xiaoyuanxinwen/')
        res.encoding = "utf-8"
        soup = BeautifulSoup(res.text, "html.parser")
        n = int(soup.select('.a1')[0].text.rstrip(''))
        return (n // 10 + 1)
    
    newsTotal = []
    url = 'http://news.gzcc.cn/html/xiaoyuanxinwen/'
    newsTotal.extend(getNewsList(url))
    
    n = getpageN()
    for i in range(n,n+1):
        listPageUrl = 'http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html'.format(i)
        newsTotal.extend(getNewsList(listPageUrl))
    
    df = pandas.DataFrame(newsTotal)
    # print(df)
    df.to_excel('wxc.xlsx')
    # print(df[(df['clickCount']>3000) & (df['source'] == '学校综合办')])
    #print(df[['clickCount', 'title', 'source']].head(6))
    sou = ['国际学院', '学生工作处']
    print(df[df['source'].isin(sou)])
  • 相关阅读:
    抽象工厂模式
    工厂方法模式
    简单工厂模式
    Zuul
    Turbine
    Hystrix
    Feign
    Ribbon
    Eureka
    @MappedSuperclass的作用
  • 原文地址:https://www.cnblogs.com/w092/p/8855235.html
Copyright © 2020-2023  润新知