目录
通过Unix命令使用Streaming
使用命令行方式的时候,输入数据必须为文本,并且每行被视为一个记录。若输入的格式是TextInputFormat,则流操作只会将值传递给mapper
提取第二列数据
- input/output:指定输入输出目录
- cut -f 2:只取第二列数据
- -d ,:指定","为分隔符
- uniq:去重
# 删除输出目录
hadoop fs -rm -r /data-for-learn/out/hadoop-practice/streamingOut/
# 调用Streaming
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar
-input /data-for-learn/hadoop-practice/cite75_99.txt
-output /data-for-learn/out/hadoop-practice/streamingOut
-mapper 'cut -f 2 -d ,'
-reducer 'uniq'
# 查看输出文件:Streaming是按文本方式处理方式,因此输出的排序是按字母的
hadoop fs -text /data-for-learn/out/hadoop-practice/streamingOut/part-00000
统计行的数量
- 不需要用到reduce,通过-D设置配置属性(GenericOptionParser)
- -D参数放前面(否则报错:ERROR streaming.StreamJob: Unrecognized option: -D)
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar
-D mapred.reduce.tasks=0
-input /data-for-learn/out/hadoop-practice/streamingOut
-output /data-for-learn/out/hadoop-practice/lineCount
-mapper 'wc -l'
# 查看输出
hadoop fs -text /data-for-learn/out/hadoop-practice/lineCount/part-00000
通过脚本使用Streaming
- 数据取自UNiX的标准输入STDIN,输出到STDOUT
随机打印STDIN输入行的Python脚本
- 该脚本可以改造成采样程序,数据采样可以得到小数据集,但带来精度损失
- 设置mapred.reduce.tasks=1,得到一个采样文件
- 设置mapred.reduce.tasks=0,得到很多个采样文件,后期用getmerge进行合并
#!/usr/bin/env python
import sys, random
for line in sys.stdin:
if (random.randint(1, 100) <= int (sys.argv[1])):
print line.strip()
- 为了让所有节点拥有该脚本,使用-file选项将该脚本打包成作业提交的一部分
- 默认的reducer是IdentityReducer
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar
-D mapred.reduce.tasks=1
-input /data-for-learn/hadoop-practice/cite75_99.txt
-output /data-for-learn/out/hadoop-practice/randomSample
-mapper 'RandomSample.py 10' # 传入参数10,10/100的比例采样
-file RandomSample.py
# 查看结果
hadoop fs -text /data-for-learn/out/hadoop-practice/randomSample/*
找到某个属性最大值的python脚本
- AttributeMax.py
#!/usr/bin/env python
#-*- coding:UTF-8 -*-
import sys
index = int (sys.argv[1])
max = 0
for line in sys.stdin:
fields = line.strip().split(",")
if fields[index].isdigit():
val = int(fields[index])
if (val > max):
max = val
else: # 当迭代对象完成所有迭代后且此时的迭代对象为空时,如果存在else子句则执行else子句(即有迭代,则执行else)
print max
- 分片(由mapper确定)的最大值
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar
-D mapred.reduce.tasks=1
-input /data-for-learn/hadoop-practice/apat63_99.txt
-output /data-for-learn/out/hadoop-practice/AttributeMaxMapper
-mapper 'AttributeMax.py 8' # 第九列的最大值
-file AttributeMax.py
# 查看结果
hadoop fs -text /data-for-learn/out/hadoop-practice/AttributeMaxMapper/*
- 全局(所有分片中)最大值
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar
-D mapred.reduce.tasks=1
-input /data-for-learn/hadoop-practice/apat63_99.txt
-output /data-for-learn/out/hadoop-practice/AttributeMaxReducer
-mapper 'AttributeMax.py 8' # 第九列的最大值
-reducer 'AttributeMax.py 0' # 第一列的最大值
-file AttributeMax.py
# 查看结果
hadoop fs -text /data-for-learn/out/hadoop-practice/AttributeMaxReducer/*
通过Streaming处理键/值对
Streaming使用制表符(' ')分隔记录中的键与值,如果没有' ',则整条记录被视为键,值为空白文本
输出为键值对的python Mapper脚本
- AverageByAttributeMapper.py
- 该脚本的输出有' '分隔符,在洗牌阶段会被识别为键值对
#!/usr/bin/env python
import sys
for line in sys.stdin:
fields = line.strip().split(",")
if (fields[8] and fields[8].isdigit()):
print fields[4][1:-1] + " " + fields[8]
- 设置reducer=0
- 键的顺序与输入一致,且没有成组
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar
-D mapred.reduce.tasks=0
-input /data-for-learn/hadoop-practice/apat63_99.txt
-output /data-for-learn/out/hadoop-practice/AverageByAttributeMapper0
-mapper 'AverageByAttributeMapper.py'
-file AverageByAttributeMapper.py
# 查看结果
hadoop fs -text /data-for-learn/out/hadoop-practice/AverageByAttributeMapper0/*
- 设置reducer=1
- 键的顺序已排序,且成组
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar
-D mapred.reduce.tasks=1
-input /data-for-learn/hadoop-practice/apat63_99.txt
-output /data-for-learn/out/hadoop-practice/AverageByAttributeMapper1
-mapper 'AverageByAttributeMapper.py'
-file AverageByAttributeMapper.py
# 查看结果
hadoop fs -text /data-for-learn/out/hadoop-practice/AverageByAttributeMapper1/* | head -n 24
求平均值的python Reducer脚本
- AverageByAttributeReducer.py
- 按行处理,且键是有序的,因此可以分组求平均
#!/usr/bin/env python
import sys
(last_key, sum, count) = (None, 0.0, 0)
for line in sys.stdin:
(key, val) = line.split(" ")
if last_key and last_key != key:
print last_key + " " + str(sum / count)
(sum, count) = (0.0, 0)
last_key = key
sum += float(val)
count += 1
print last_key + " " + str(sum / count)
- 执行
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar
-D mapred.reduce.tasks=1
-input /data-for-learn/hadoop-practice/apat63_99.txt
-output /data-for-learn/out/hadoop-practice/AverageByAttributeReducer
-mapper 'AverageByAttributeMapper.py'
-reducer 'AverageByAttributeReducer.py'
-file AverageByAttributeMapper.py
-file AverageByAttributeReducer.py
# 查看结果
hadoop fs -text /data-for-learn/out/hadoop-practice/AverageByAttributeReducer/*
通过Aggregate包使用Streaming
聚合函数通常分3类
- 分配型:最大值、最小值、总和以及计数(具有分配律特征)
- 代数型:平均值和方差(不遵循分配律)
- 全集型:K个最小/最大、中值函数
Mapper输出的格式
值聚合器:K V
Aggregate包支持的值聚合器函数列表
值聚合器 | 描述 |
---|---|
DoubleValueSum | |
LongValueMax/LongValueMin/LongValueSum | |
StringValueSum/StringValueMin | |
UniqValueCount | |
ValueHistogram |
Aggregate信号为LongValueSum的例子
- AttributeCount.py
- 'aggregate:' + key + ' ' +value
#!/usr/bin/env python
import sys
index = int(sys.argv[1])
for line in sys.stdin:
fields = line.split(",")
print "LongValueSum:" + fields[index] + ' ' + '1'
- 运行
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar
-input /data-for-learn/hadoop-practice/apat63_99.txt
-output /data-for-learn/out/hadoop-practice/AttributeCountSum
-mapper 'AttributeCount.py 1'
-reducer aggregate
-file AttributeCount.py
# 查看结果
hadoop fs -text /data-for-learn/out/hadoop-practice/AttributeCountSum/*
Aggregate信号为UniqValueCount的例子
- UniqueCount.py
- 按index1分组,对index1组内求去重总数(每年参与的国家数)
#!/usr/bin/env python
import sys
index1 = int(sys.argv[1])
index2 = int(sys.argv[2])
for line in sys.stdin:
fields = line.split(",")
print "UniqValueCount:" + fields[index1] + ' ' + fields[index2]
- 运行
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar
-input /data-for-learn/hadoop-practice/apat63_99.txt
-output /data-for-learn/out/hadoop-practice/UniqueCountByCountry
-mapper 'UniqueCount.py 1 4'
-reducer aggregate
-file UniqueCount.py
# 查看结果
hadoop fs -text /data-for-learn/out/hadoop-practice/UniqueCountByCountry/*
Aggregate信号为ValueHistogram的例子
ValueHistogram按顺序输出:唯一值个数(统计键的数量)、最小个数、中值个数、最大个数、平均个数、标准方差
ValueHistogram:K V Count
- ValueHistogram.py
- 按index1分组,统计上述值
#!/usr/bin/env python
#-*- coding:UTF-8 -*-
import sys
index1 = int(sys.argv[1])
index2 = int(sys.argv[2])
for line in sys.stdin:
fields = line.split(",")
print "ValueHistogram:" + fields[index1] + ' ' + fields[index2] # 最后的个数Count可以省略,默认为1
- 运行
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar
-input /data-for-learn/hadoop-practice/apat63_99.txt
-output /data-for-learn/out/hadoop-practice/ValueHistogram
-mapper 'ValueHistogram.py 1 4'
-reducer aggregate
-file ValueHistogram.py
# 查看结果
hadoop fs -text /data-for-learn/out/hadoop-practice/ValueHistogram/*