• boston_housing-多分类问题


    from keras.datasets import boston_housing
    import numpy as np
    from keras import models
    from keras import layers
    import matplotlib.pyplot as plt
    #x,13个特征,一共404条数据
    #y,连续值标签,单位是千美元
    (x_train, y_train), (x_test, y_test) = boston_housing.load_data()
    #对数据做原处理,特征标准化
    #每个特征减去平均值,除以标准差,得到的特征平均值为0,标准差为1
    avg = x_train.mean(axis=0)
    x_train -= avg
    std = np.std(x_train,axis=0)
    x_train /=std
    
    network = models.Sequential()
    network.add(layers.Dense(64,activation='relu'))
    network.add(layers.Dense(64,activation='relu'))
    network.add(layers.Dense(1))
    
    #mse均方误差,预测值与目标值差的平方
    #mae平均绝对误差,预测值与目标值差的绝对值
    network.compile(optimizer='rmsprop',loss='mse',metrics=['mae'])
    
    history = network.fit(x_train,y_train,batch_size=16,epochs=80,validation_split=0.1)
    
    mae = history.history['val_mean_absolute_error']
    
    epochs = range(1,81)
    #loss的图
    plt.plot(epochs,mae,'g',label = 'mae')
    plt.xlabel('epochs')
    plt.ylabel('mean_absolute_error')
    #显示图例
    plt.legend()
    plt.show()

  • 相关阅读:
    【CF833E】Caramel Clouds
    【LG2183】[国家集训队]礼物
    (ex)Lucas总结
    【CF527C】Glass Carving
    【CF833D】Red-Black Cobweb
    【LG4631】[APIO2018]Circle selection 选圆圈
    volatile梳理
    ThreadLocal梳理
    java线程基础梳理
    TCP/IP
  • 原文地址:https://www.cnblogs.com/vshen999/p/10467346.html
Copyright © 2020-2023  润新知