So he is counting stars now!
There are n stars in the sky, and little A has connected them by m non-directional edges.
It is guranteed that no edges connect one star with itself, and every two edges connect different pairs of stars.
Now little A wants to know that how many different "A-Structure"s are there in the sky, can you help him?
An "A-structure" can be seen as a non-directional subgraph G, with a set of four nodes V and a set of five edges E.
If V=(A,B,C,D) and E=(AB,BC,CD,DA,AC), we call G as an "A-structure".
It is defined that "A-structure" G1=V1+E1 and G2=V2+E2 are same only in the condition that V1=V2 and E1=E2
Input
There are no more than 300 test cases.
For each test case, there are 2 positive integers n and m in the first line.
2≤n≤105, 1≤m≤min(2×105,n(n−1)2)And then m lines follow, in each line there are two positive integers u and v, describing that this edge connects node u and node v.1≤u,v≤n,∑n≤3×105,∑m≤6×105
Output
For each test case, just output one integer--the number of different "A-structure"s in one line.Sample Input
4 5
1 2
2 3
3 4
4 1
1 3
4 6
1 2
2 3
3 4
4 1
1 3
2 4
Sample Output
1
6
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 1e5+10;
vector<int> G[MAXN];
set<LL> S;
bool vis[MAXN];
int pre[MAXN],Du[MAXN];
inline void init(){
for(int i=1 ; i<MAXN ; ++i)G[i].clear();
S.clear();
memset(vis,false,sizeof vis);
memset(Du,0,sizeof Du);
memset(pre,0,sizeof pre);
}
int main(){
int N,M;
while(scanf("%d %d",&N,&M)!=EOF){
init();
int Flag = sqrt(1.0*M);
for(int i=1 ; i<=M ; ++i){
int a,b;
scanf("%d %d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
S.insert((LL)a*N+b);
S.insert((LL)b*N+a);
Du[a]++;Du[b]++;
}
LL re = 0;
for(int i=1 ; i<=N ; ++i){
vis[i] = true;
for(int j=0 ; j<G[i].size() ; ++j)pre[G[i][j]] = i;
for(int j=0 ; j<G[i].size() ; ++j){
LL sum = 0;
int t = G[i][j];
if(vis[t])continue;
if(Du[t]<=Flag){
for(int k=0 ; k<G[t].size() ; ++k){
if(pre[G[t][k]] == i)++sum;
}
}
else {
for(int k=0 ; k<G[i].size() ; ++k){
if(S.find((LL)G[i][k]*N+t) != S.end())++sum;
}
}
re += (LL)(sum*(sum-1)/2);
}
}
printf("%lld
",re);
}
return 0;
}