- Range Sum Query - Mutable
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.
The update(i, val) function modifies nums by updating the element at index i to val.
Example:
Given nums = [1, 3, 5]
sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8
Constraints:
- The array is only modifiable by the update function.
- You may assume the number of calls to update and sumRange function is distributed evenly.
0 <= i <= j <= nums.length - 1
解法1 将查询区间的数字直接求和
class NumArray {
public:
vector<int>Array;
NumArray(vector<int>& nums) {
Array = nums;
}
void update(int i, int val) {
Array[i] = val;
}
int sumRange(int i, int j) {
int res = 0;
for(int k = i; k <= j; ++k)res += Array[k];
return res;
}
};
解法2 求和数组。先将数组的前n项和计算出来,更新的时候将前k项和(k>= i)更新即可
class NumArray {
public:
vector<int>S{0};
vector<int>Array;
NumArray(vector<int>& nums) {
Array = nums;
for(int i = 0; i < nums.size(); ++i){
S.push_back(S.back() + nums[i]);
}
}
void update(int i, int val) {
int d = val - Array[i];
Array[i] = val;
for(int j = i + 1; j < S.size(); ++j)S[j] += d;
}
int sumRange(int i, int j) {
return S[j+1] - S[i];
}
};
解法3 分块求和。解法2中update函数花费时间较多,更新的平均时间复杂度为(O(n/2)),为了控制更新的范围,将数组划分为多个块,更新控制在对应的块内,将块的尺寸取为(sqrt{n}),更新的时间复杂度为(O(sqrt{n}))
class NumArray {
public:
int block_size;
vector<int>Array;
vector<int>S;
NumArray(vector<int>& nums) {
Array = nums;
block_size = int(sqrt(nums.size()));
int sum = 0;
for(int i = 0; i < nums.size(); ++i){
sum += nums[i];
if((i+1) % block_size == 0 || i + 1 == nums.size()){
S.push_back(sum);
sum = 0;
}
}
}
void update(int i, int val) {
S[i / block_size] += val - Array[i];
Array[i] = val;
}
int sumRange(int i, int j) {
int res = 0;
int s_b = i / block_size, e_b = j / block_size;
if(s_b == e_b){
for(int k = i; k <= j; ++k)res += Array[k];
}
else{
for(int k = i; k < (s_b+1)*block_size; ++k)res += Array[k];
for(int b =s_b + 1; b < e_b; ++b)res += S[b];
for(int k = e_b*block_size; k <= j; ++k)res += Array[k];
}
return res;
}
};
解法4 线段树(不想看了。。。)