• 【刷题-LeetCode】209. Minimum Size Subarray Sum


    1. Minimum Size Subarray Sum

    Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.

    Example:

    Input: s = 7, nums = [2,3,1,2,4,3]
    Output: 2
    Explanation: the subarray [4,3] has the minimal length under the problem constraint.
    

    Follow up:

    If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).

    解法1 暴力搜索

    找出所有的$sum_{k=i}^j a_k geq s (的子串,取长度)j-i+1$最小的

    class Solution {
    public:
        int minSubArrayLen(int s, vector<int>& nums) {
            if(nums.size() == 0)return 0;
            int ans = INT_MAX;
            for(int i = 0; i < nums.size(); ++i){
                int tmp_sum = 0;
                for(int j = i; j < nums.size() && j - i <= ans; ++j){
                    tmp_sum += nums[j];
                    if(tmp_sum >= s)ans = min(ans, j-i+1);
                }
            }
            return ans == INT_MAX ? 0 : ans;
        }
    };
    

    Note :

    • 在内层循环中,一定要加j - i <= ans的判断条件,否则会超时
    • 为了避免在内层循环中重复求和,可以先计算nums的前n项和,放到数组sum中

    解法2 二分查找。前n项和数组sum一定是单调递增的,原问题可以转换为:

    查找(sum[i] + s)在sum中第一次出现的位置((i = 0, 1, 2, ..., nums.size())),即找(nums[i] + ... + nums[j] geq s)对应的最小长度

    直接调用c++ stl中的lower_bound()函数

    class Solution {
    public:
        int minSubArrayLen(int s, vector<int>& nums) {
            if(nums.size() == 0)return 0;
            vector<int>sum(nums.size() + 1, 0);
            for(int i = 0; i < nums.size(); ++i)sum[i+1] = sum[i]+nums[i];
            int ans = INT_MAX;
            for(int i = 1; i <= nums.size(); ++i){
                int to_find = s + sum[i-1];
                auto bound = lower_bound(sum.begin(), sum.end(), to_find);
                if(bound != sum.end())ans = min(ans, int(bound - sum.begin()) - i + 1);
            }
            return ans == INT_MAX ? 0 : ans;
        }
    };
    

    解法3 one-pass。记录满足(sum geq s)的子串的起始位置,在找到一个符合条件的子串后,不断收缩子串

    class Solution {
    public:
        int minSubArrayLen(int s, vector<int>& nums) {
            if(nums.size() == 0)return 0;
            int ans = INT_MAX, left = 0, sum = 0;
            for(int i = 0; i < nums.size(); ++i){
                sum += nums[i];
                while(sum >= s){
                    ans = min(ans, i - left + 1);
                    sum -= nums[left++];
                }
            }
            return ans == INT_MAX ? 0 : ans;
        }
    };
    
  • 相关阅读:
    LyX – The Document Processor
    An HTML5 presentation builder — Read more
    R语言定义
    A Hybrid User and ItemBased Collaborative Filtering with Smoothing on Sparse Data
    RapidMiner
    http://www.rseek.org一个查找R资料的站点
    An HTML5 presentation builder — Read more
    R代码脚本的运行
    data ming with R a book
    A Hybrid User and ItemBased Collaborative Filtering with Smoothing on Sparse Data
  • 原文地址:https://www.cnblogs.com/vinnson/p/13322841.html
Copyright © 2020-2023  润新知