Given a linked list, return the node where the cycle begins. If there is no cycle, return null
.
Follow up:
Can you solve it without using extra space?
思路:快慢指针的应用。设fast为快指针,每次步进两个节点,慢指针为slow,每次步进一个节点。设环长度为Y,环入口距离起点的距离为X,。两个指针在环内距离入口的第k个节点相遇。当两个指针相遇时,慢指针共走了 S步(S=X+nY+K ),快指针共走了2S步(2S= X+mY+K)步。所以
2×(X+nY+K) = X+mY+K
=> (m-2n)Y = X+K
=> X = (m-2n-1)Y+(Y-K)
所以另慢指针从起点开始走,每次步进一个节点。快指针从相遇的节点开始每次步进一个节点。则两个指针最终会在环入口处相遇。
如果m-2n-1=0,那么Y-K=X,快指针直接达到入口处。如果不为零,那么快指针将要在圈内转上几个来回才能在入口处与满指针相遇。
无论上述哪个情况,两个指针都走了X步。
时间复杂度O(n),空间复杂度O(1)
1 /** 2 * Definition for singly-linked list. 3 * struct ListNode { 4 * int val; 5 * ListNode *next; 6 * ListNode(int x) : val(x), next(NULL) {} 7 * }; 8 */ 9 class Solution { 10 public: 11 ListNode *detectCycle(ListNode *head) { 12 if (head == NULL) return head; 13 ListNode *fast = head; 14 ListNode *slow = head; 15 16 while (fast != NULL && fast->next != NULL) { 17 fast = fast->next->next; 18 slow = slow->next; 19 if (fast == slow) break; 20 } 21 22 if (fast == NULL || fast->next == NULL) 23 return NULL; 24 25 slow = head; 26 while (slow != fast) { 27 slow = slow->next; 28 fast = fast->next; 29 } 30 return slow; 31 } 32 };