• 图的基本方法(BFS 和DFS 的 遍历)


    图的形式如下所示:

    分别使用 BFS DFS 来对图进行遍历;并利用BFS 来求  无权重图的无向图 的最短路径

      1 #!/usr/bin/python
      2 # -*- coding: UTF-8 -*-
      3 graph ={
      4     'A':['B','C'],
      5     'B':['A','C','D'],
      6     'C':['A','B','D','E'],
      7     'D':['B','C','E','F'],
      8     'E':['C','D'],
      9     'F':['D']
     10 }
     11 def BFS(graph,start):
     12     queue = []
     13     visted = set()
     14     queue.append(start)
     15     visted.add(start)
     16     layer = []
     17     while(len(queue) >0):
     18         node = queue.pop(0)
     19         neighbors = graph[node]
     20         for v in neighbors:
     21             if v not in visted:
     22                 queue.append(v)
     23                 visted.add(v)
     24         layer.append(node)
     25     return layer
     26 layer = BFS(graph,'A')
     27 print(layer)
     28 
     29 def BFS_withLayer(graph,start):
     30     queue = []
     31     visted = set()
     32     queue.append(start)
     33     visted.add(start)
     34     layers = []
     35     while(len(queue) >0):
     36         len_queue = len(queue)
     37         layer =  []
     38         for i in range(len_queue):
     39             node = queue.pop(0)
     40             layer.append(node)
     41             visted.add(start)
     42             neighbors = graph[node]
     43             for v in neighbors:
     44                 if v not in visted:
     45                     queue.append(v)
     46                     visted.add(v)
     47         layers.append(layer)
     48     return layers
     49 layers = BFS_withLayer(graph,'A')
     50 print(layers)
     51 print('----------------------------------')
     52 
     53 def DFS(graph,start):
     54     stack = []
     55     visted = set()
     56     stack.append(start)
     57     visted.add(start)
     58     layer = []
     59     while(len(stack) >0):
     60         node = stack.pop()
     61         neighbors = graph[node]
     62         for v in neighbors:
     63             if v not in visted:
     64                 stack.append(v)
     65                 visted.add(v)
     66         layer.append(node)
     67     return layer
     68 layer = DFS(graph,'A')
     69 print(layer)
     70 
     71 print("=============================")
     72 ### 利用BFS来求无权值的无向图的最短路径问题:
     73 def BFS_Short_Path(graph,start):
     74     queue = []
     75     visted = set()
     76     parent = {}
     77     queue.append(start)
     78     visted.add(start)
     79     parent[start] = None
     80     while(len(queue) >0):
     81         node =queue.pop(0)
     82         neighbors = graph[node]
     83         for v in neighbors:
     84             if v not in visted:
     85                 queue.append(v)
     86                 visted.add(v)
     87                 parent[v] = node
     88         # print(node)
     89     return parent
     90 parents = BFS_Short_Path(graph,'A')
     91 print(parents)
     92 ## 则从 A 到E的路径为
     93 v = 'E'
     94 path = []
     95 path.append(v)
     96 while parents[v] != None:
     97     path.append(parents[v])
     98     v = parents[v]
     99 print(path)
    100 print(path[::-1])

    输出的结果为:

    ['A', 'B', 'C', 'D', 'E', 'F']
    [['A'], ['B', 'C'], ['D', 'E'], ['F']]
    ----------------------------------
    ['A', 'C', 'E', 'D', 'F', 'B']
    =============================
    {'A': None, 'E': 'C', 'C': 'A', 'B': 'A', 'D': 'B', 'F': 'D'}
    ['E', 'C', 'A']
    ['A', 'C', 'E']

    若图是如下所示,应如何实现:

    具体的代码如下 :

     1 #!/usr/bin/python
     2 # -*- coding: UTF-8 -*-
     3 import heapq
     4 import math
     5 graph ={
     6     'A':{'B':5,'C':1},
     7     'B':{'A':5,'C':2,'D':1},
     8     'C':{'A':1,'B':2,'D':4,'E':8},
     9     'D':{'B':1,'C':4,'E':3,'F':6},
    10     'E':{'C':8,'D':3},
    11     'F':{'D':6}
    12 }
    13 def init_distnce(graph,start):
    14     distance ={}
    15     for v in graph.keys():
    16         if v !=start:
    17             distance[v] = 999999
    18         else:
    19             distance[v] = 0
    20     return distance
    21 # t = init_distnce(graph,'A')
    22 # print(t)
    23 def dijkstra(graph,start):
    24     pqueue = []
    25     heapq.heappush(pqueue,(0,start))
    26     visted = set()
    27     distance = init_distnce(graph,start)
    28     parent = {start:None}
    29     while(len(pqueue)>0):
    30         pair = heapq.heappop(pqueue)
    31         dist = pair[0]
    32         node = pair[1]
    33         visted.add(node)
    34         neighbors = graph[node].keys()
    35         for w in neighbors:
    36             if w not in visted:
    37                 if dist + graph[node][w] < distance[w]:
    38                     heapq.heappush(pqueue,(dist + graph[node][w],w))
    39                     parent[w] = node
    40                     distance[w] = dist + graph[node][w]
    41     return distance,parent
    42 
    43 distance,parent = dijkstra(graph,'A')
    44 print("Parent: ",parent)
    45 print("Distance: ",distance)

    结果:

    Parent:  {'F': 'D', 'C': 'A', 'E': 'D', 'D': 'B', 'A': None, 'B': 'C'}
    Distance:  {'F': 10, 'C': 1, 'E': 7, 'D': 4, 'A': 0, 'B': 3}
  • 相关阅读:
    UVa 10088 (Pick定理) Trees on My Island
    LA 3295 (计数 容斥原理) Counting Triangles
    LA 5846 (计数) Neon Sign
    java是什么?软帝学院告诉你学Java能做什么?Java有什么特性?
    【软帝学院】一套好的java基础教学视频需要哪些有哪些内容
    推荐五个java基础学习网站,小白必备
    学习java设计模式有用吗?懂这六个原则,编程更轻松
    Java是什么?只需5分钟,了解java必须要知道的知识点
    软帝学院:自学java到底难不难?做好这几步,少走3年弯路
    软帝学院:java开发程序很难吗?学会这十步,5分钟搞定一个程序
  • 原文地址:https://www.cnblogs.com/vincentbnu/p/9537503.html
Copyright © 2020-2023  润新知