• 机器学习笔记(一)线性回归模型


    (一)引入—梯度下降算法

    1. 线性假设:

    2. 方差代价函数:

     

    3. 梯度下降:

     

    4. : learning rate

    (用来控制我们在梯度下降时迈出多大的步子,值较大,梯度下降就很迅速)

    值过大易造成无法收敛到minimum(每一步迈更大)

    值较小且适宜的情况下,步子越来越小直到收敛(导数项为零) 不再改变。

     

    (注:每一次梯度下降,需完成多个的同步更新

    右侧计算后立即更新是不正确的,在计算时使用了新的,未实现同步。

    (二)结合——线性回归模型

    1.一元线性回归模型

     

    分别对求偏导:

     

    将导数项代回得梯度下降:

     

    课堂注解:

    2. 多元线性回归模型

    (1) 多元线性回归假设函数形式:

    (2)多元线性回归梯度下降算法表达式:

    课程注解:

    (三)Some Tips

    1. 特征缩放:使梯度下降的速度更快,收敛所需的迭代次数更少。

    假设我们有两个特征 ,在梯度下降的过程中,画出的参数等值线如下图。

    由图中红线可以看出,当 值的scale(取值范围)相差很大时,梯度下降的的道路是曲折的,而当对数值进行处理后,梯度下降的过程变得很高效。所以我们在实际操作时,经常将特征的取值约束到-1到+1的范围内。(-1、+1两个数值并不重要,只是作为辅助作用将特征取值调整到合适范围)

    有时我们需要将特征值“标准化”使其均值为0,其中是训练集中特征值的平均值,是该特征值的取值范围(最大值-最小值)

    2. 是否收敛(观察图像及收敛测试)

     

    推荐通过左侧图像观察梯度下降算法是否正常工作,而不是依靠自动收敛测试。

    3. 关于学习率

    左侧两种情况出现的原因可能是过大,然而如果过小,收敛将极其缓慢。

     

    (通常会尝试一些值,如0.01、0.001,十倍取一个值,对于这些不同的值,绘制随迭代步数变化的曲线,选择使快速下降的值,实际中常取三倍来找合适的值)

     

    在训练模型对数据进行拟合时,我们可以自由选择使用什么特征,并且通过设计不同的特征,我们可以使用更复杂的函数去拟合数据,而不是只用一条直线去拟合。

    (四)正规方程法

    1. 正规方程法一步求出最小(不需要特征缩放)

    将矩阵X、向量y带入如下公式,(X:将第i条训练数据特征值转置,作为设计矩阵X的第i行。y:把所有标签,如训练集中的所有房价数据,放在一起构成。)即可求出目标参数值。

     2. 正规方程法和梯度下降法优缺点比较

    (n<10000选用正规方程法)

    小结:我们可以看到,对于线性回归这个特定的模型,正规方程法能够成为一个比梯度下降法更快的替代算法,而在Logistics回归模型等一些其他更复杂的模型当中,正规方程法不适用。所以,我们应该掌握这两种方法,根据具体的算法、根据具体的问题,以及特征的数量,对这两种方法进行更好的应用。

  • 相关阅读:
    记一次小团队Git实践(下)
    记一次小团队Git实践(中)
    记一次小团队Git实践(上)
    Android拓展系列(12)--使用Gradle发布aar项目到JCenter仓库
    Android学习系列(43)--使用事件总线框架EventBus和Otto
    Android拓展系列(11)--打造Windows下便携的Android源码阅读环境
    Android学习系列(40)--Android主题和样式之系统篇(下)
    Android学习系列(42)--Android Studio实战技巧
    Android学习系列(41)--Android Studio简单使用
    Android学习系列(39)--Android主题和样式之系统篇(上)
  • 原文地址:https://www.cnblogs.com/veraLin/p/9936534.html
Copyright © 2020-2023  润新知