• noip模拟【20171102】


    T1

    [数学]

    期望得分:100

    先通分,求出分子的最小公倍数,再讨论跟共同的分母B*D的关系即可。

    【code】

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long 
    #define File "tile"
    inline void file(){
        freopen(File".in","r",stdin);
        freopen(File".out","w",stdout);
    } 
    inline int read(){
        int x = 0,f = 1; char ch = getchar();
        while(ch < '0' || ch > '9'){if(ch=='-')f = -1; ch = getchar();}
        while(ch >= '0' && ch <= '9'){x = (x<<1) + (x<<3) + ch-'0'; ch = getchar();}
        return x*f;
    }
    //const int mxn = ;
    
    int T,A,B,C,D;
    
    ll gcd(ll x,ll y){
        return y ? gcd(y,x%y) : x;
    } 
    
    int main(){
        file();
        T = read();
        while(T--){
            A = read(),B = read(),C = read(),D = read();
            ll t1 = A*D,t2 = C*B;
            ll gcd_ = gcd(t1,t2);    
            ll mul_ = t1*t2;    
            ll lcm_ = mul_/gcd_;
            ll tmp = gcd(lcm_,B*D);
            if(tmp == B*D) printf("%lld
    ",lcm_/(B*D));
            else printf("%lld/%lld
    ",lcm_/tmp,(B*D)/tmp);
        }
        return 0;
    }
    View Code

    T2

    [?]

    枚举所有边,判断是否满足它连接的两个点度数分别为2和3,计数。

    还要记录度数为3的点与之相连非当前枚举到的边的最长长度+当前枚举到的边的长度+与度数为2的点相连的最长的边。

    为了求最长长度,需要记录每个点的连边中前三大的。

    【code】

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long 
    #define File "question"
    inline void file(){
        freopen(File".in","r",stdin);
        freopen(File".out","w",stdout);
    } 
    inline int read(){
        int x = 0,f = 1; char ch = getchar();
        while(ch < '0' || ch > '9'){if(ch=='-')f = -1; ch = getchar();}
        while(ch >= '0' && ch <= '9'){x = (x<<1) + (x<<3) + ch-'0'; ch = getchar();}
        return x*f;
    }
    const int mxn = 2e5 + 5;
    int n;
    struct edge{
        int x,y,v;
    }e[mxn<<1];
    
    int deg[mxn];
    int mx1[mxn],mx2[mxn],mx3[mxn];
    int to1[mxn],to2[mxn];
    
    inline void prewor(int x,int y,int z){
        if(z >= mx1[x]){
            mx3[x] = mx2[x],mx2[x] = mx1[x],mx1[x] = z;
            to2[x] = to1[x],to1[x] = y;
        }else if(z >= mx2[x]){
            mx3[x] = mx2[x],mx2[x] = z;
            to2[x] = y;    
        }else if(z > mx3[x]) mx3[x] = z;
    }
    
    ll cnt,mx;
    inline void wor(int x,int y,int z){
        if(deg[x] >= 3 && deg[y] >= 2)
            cnt += (deg[x]-1)*(deg[x]-2)*(deg[y]-1)/2;
        if(y==to1[x] && mx3[x]){
            if(x==to1[y])
                 if(mx2[y]) mx = max(mx,mx2[y] + z + mx2[x] + mx3[x]);
            //该边为最长边 
            else if(mx1[y]) mx = max(mx,mx2[x] + mx3[x] + mx1[y] + z); 
        }else if(y==to2[x] && mx3[x]){
            if(x==to1[y])
                if(mx2[y]) mx = max(mx,mx1[x] + z + mx3[x] + mx2[y]);
            else if(mx1[y]) mx = max(mx,mx1[y] + z + mx1[x] + mx3[x]);
        }else {
    
        }
    }
    
    int main(){
    //    file();
        n = read();
        for(int i = 1;i < n; ++i){
            int x = read(),y = read(),v = read();
            e[i] = (edge){x,y,v};
            deg[x]++,deg[y]++;    
            prewor(x,y,v),prewor(y,x,v);
        }
        for(int i = 1;i < n; ++i){
            
        }
        printf("%lld
    %lld
    ",cnt,mx);
        return 0;
    }
    /*
    7
    1 3 2
    2 3 1
    3 5 1
    5 4 2
    4 6 3
    5 7 3
    */
    View Code

    T3

    [搜索+剪枝]

    每个水管可以看做是2+2(分别朝不同的方向)或者3+1。

    直接搜索+剪枝。

    根据当前点到终点的曼哈顿距离,可以求出这个点到终点的最少步数。

    如果当前点加上到达终点的最小步数,还是没有ans优,直接剪枝。

    注意代码细节处理。

    【code】

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long 
    #define File "plumber"
    inline void file(){
        freopen(File".in","r",stdin);
        freopen(File".out","w",stdout);
    }
    inline int read(){
        int x = 0,f = 1; char ch = getchar();
        while(ch < '0' || ch > '9'){if(ch=='-')f = -1; ch = getchar();}
        while(ch >= '0' && ch <= '9'){x = (x<<1) + (x<<3) + ch-'0'; ch = getchar();}
        return x*f; 
    }
    const int mxn = 25;
    int X,Y,Z,m;
    
    int st_x,st_y,st_z,st_k;
    int ed_x,ed_y,ed_z,ed_k;
    char st_tp,ed_tp;
    
    bool v[mxn][mxn][mxn],vis[mxn][mxn][mxn];
    
    const int dx[6] = {1,-1,0,0,0,0};
    const int dy[6] = {0,0,1,-1,0,0};
    const int dz[6] = {0,0,0,0,1,-1};
    
    inline bool ok(int x,int y,int z){
        return x>0&&x<=X&&y>0&&y<=Y&&z>0&&z<=Z&&!v[x][y][z]&&!vis[x][y][z];
    }
    
    int ans = 13;
    void dfs(int x,int y,int z,int d,int cnt){
        int dis = (abs(ed_x-x)+abs(ed_y-y)+abs(ed_z-z))/4;
        if(dis + cnt >= ans) return;
        if(x==ed_x && y==ed_y && z==ed_z){
            if(d==ed_k) ans = cnt;
            return;
        }    
        if(ok(x+dx[d],y+dy[d],z+dz[d]) && ok(x+dx[d]*2,y+dy[d]*2,z+dz[d]*2)){
            
            vis[x+dx[d]][y+dy[d]][z+dz[d]] = vis[x+dx[d]*2][y+dy[d]*2][z+dz[d]*2] = 1;
            int x_ = x+dx[d]*2,y_ = y+dy[d]*2,z_ = z+dz[d]*2;    
            
            for(int i = 0;i < 6; ++i){//2+2
                if((i/2) != (d/2)){
                    if(ok(x_+dx[i],y_+dy[i],z_+dz[i]) && ok(x_+dx[i]*2,y_+dy[i]*2,z_+dz[i]*2)){
                        vis[x_+dx[i]][y_+dy[i]][z_+dz[i]] = vis[x_+dx[i]*2][y_+dy[i]*2][z_+dz[i]*2] = 1;
                        dfs(x_+dx[i]*2,y_+dy[i]*2,z_+dz[i]*2,i,cnt+1);
                        vis[x_+dx[i]][y_+dy[i]][z_+dz[i]] = vis[x_+dx[i]*2][y_+dy[i]*2][z_+dz[i]*2] = 0;        
                    }
                }
            }
            
            if(ok(x+dx[d]*3,y+dy[d]*3,z+dz[d]*3)){
            
                vis[x+dx[d]*3][y+dy[d]*3][z+dz[d]*3] = 1;
            
                int _x = x+dx[d]*3,_y = y+dy[d]*3,_z = z+dz[d]*3;
                for(int i = 0;i < 6; ++i){
                    if((i/2) != (d/2)){
                        if(ok(_x+dx[i],_y+dy[i],_z+dz[i])){
                            vis[_x+dx[i]][_y+dy[i]][_z+dz[i]] = 1;
                            dfs(_x+dx[i],_y+dy[i],_z+dz[i],i,cnt+1);
                            vis[_x+dx[i]][_y+dy[i]][_z+dz[i]] = 0;
                        }
                    }
                }
                
                vis[x+dx[d]*3][y+dy[d]*3][z+dz[d]*3] = 0;
            }    
                
            vis[x+dx[d]][y+dy[d]][z+dz[d]] = vis[x+dx[d]*2][y+dy[d]*2][z+dz[d]*2] = 0;        
        } 
        
    }
    
    int main(){
        file();
        X = read(),Y = read(),Z = read(),m = read();
    
        st_x = read(),st_y = read(),st_z = read(),st_tp = getchar();
        if(st_tp=='x') st_k = (st_x==1)?0:1;
        if(st_tp=='y') st_k = (st_y==1)?2:3;
        if(st_tp=='z') st_k = (st_z==1)?4:5;
        
        ed_x = read(),ed_y = read(),ed_z = read(),ed_tp = getchar();
        if(ed_tp=='x') ed_k = (ed_x==1)?1:0;
        if(ed_tp=='y') ed_k = (ed_y==1)?3:2;
        if(ed_tp=='z') ed_k = (ed_z==1)?5:4;
        
        for(int i = 1;i <= m; ++i){
            int x = read(),y = read(),z = read();
            v[x][y][z] = 1;
        }
            
        dfs(st_x-dx[st_k],st_y-dy[st_k],st_z-dz[st_k],st_k,0);
    //    printf("%d
    ",ans);
        ans < 13 ? printf("%d
    ",ans) : puts("impossible");
        
        return 0;
    }
    /*
    5 4 3 1
    3 1 1 z
    1 4 3 x
    2 3 3
    */
    View Code
  • 相关阅读:
    SpringSecurity (Spring权限验证)
    Spring mvc Session拦截器
    判断是否登录的拦截器SessionFilter
    Jquery绑定多个BUTTON 点击事件
    jquery ajax提交表单数据的两种方式
    ASP小贴士/ASP Tips
    遍历组合的实现——VB2005
    应用程序生命周期(墓碑机制(程序和页面))【WP7学习札记之十一】
    反应性扩展框架(Reactive Extensions)【WP7学习札记之十六】
    ASP.NET 4【MSDN参考文档方便自己查阅】
  • 原文地址:https://www.cnblogs.com/ve-2021/p/11373410.html
Copyright © 2020-2023  润新知