• 2020蓝桥杯c++ A组 国赛 皮亚诺曲线距离


    2020蓝桥杯c++ A组 皮亚诺曲线距离

    时间限制: 1.0s 内存限制: 256.0MB

    【问题描述】
    皮亚诺曲线是一条平面内的曲线。
    下图给出了皮亚诺曲线的 1 阶情形,它是从左下角出发,经过一个 3 × 3 的方格中的每一个格子,最终到达右上角的一条曲线。

    下图给出了皮亚诺曲线的 2 阶情形,它是经过一个 32 × 32 的方格中的每一个格子的一条曲线。它是将 1 阶曲线的每个方格由 1 阶曲线替换而成。

    下图给出了皮亚诺曲线的 3 阶情形,它是经过一个 33 × 33 的方格中的每一个格子的一条曲线。它是将 2 阶曲线的每个方格由 1 阶曲线替换而成。

    皮亚诺曲线总是从左下角开始出发,最终到达右上角。

    我们将这些格子放到坐标系中,对于 k 阶皮亚诺曲线,左下角的坐标是(0, 0),右上角坐标是 (3k − 1, 3k − 1),右下角坐标是 (3k − 1, 0),左上角坐标是(0, 3k − 1)。

    给定 k 阶皮亚诺曲线上的两个点的坐标,请问这两个点之间,如果沿着皮亚诺曲线走,距离是多少?

    【输入格式】
    输入的第一行包含一个正整数 k,皮亚诺曲线的阶数。第二行包含两个整数 x1, y1,表示第一个点的坐标。
    第三行包含两个整数 x2, y2,表示第二个点的坐标。

    【输出格式】
    输出一个整数,表示给定的两个点之间的距离。

    【样例输入】
    1
    0 0
    2 2

    【样例输出】
    8

    【样例输入】
    2
    0 2
    0 3

    【样例输出】
    13

    【评测用例规模与约定】
    对于 30% 的评测用例,0 ≤ k ≤ 10。
    对于 50% 的评测用例,0 ≤ k ≤ 20。
    对于所有评测用例,\(0 ≤ k ≤ 100, 0 ≤ x_1, y_1, x_2, y_2 < 3^k, x_1, y_1, x_2, y_2 ≤ 10^{18}\)
    数据保证答案不超过 \(10^{18}\)

    思路

    类似于 分形之城

    对于给定的两个点,我们先求出它们到起点的距离。
    差的绝对值就是这两个点的距离和。

    递归求解问题。

    假如现在要求 \((7,4)\) 点到起点的距离。

    根据坐标我们可以知道它位于上图中的 \(8\) 部分。

    答案转化为了 \(1-7\) 部分中的点的数量+ \((1,1)\) 点在 8 部分中到起点的距离。\((1,1)\) 点是 \((7,4)\) 点在 \(8\) 部分中的坐标。

    我们定义一个函数 \(cal(n,x,y) 表示在 n 阶皮亚诺曲线中 (x,y) 到起点的距离\)

    那么我们求出 \((x,y)\)\(id\) 部分之后,可以求出之前的距离:\((id-1) \times (n-1阶曲线的点数)\),并且得到其在 \(id\) 部分的坐标 \((x',y')\),将 \(id\) 部分变换成 \(n-1\) 阶皮亚诺曲线(旋转或者翻转),并将 \((x',y')\) 做相应的变换,得到 \((x'',y'')\)

    答案即为 \((id-1) \times (n-1阶曲线的点数) + cal(n-1,x'',y'')\)

    递归下去即可。

    代码

    #include <bits/stdc++.h>
    #define pb push_back
    using namespace std;
    typedef long long ll;
    typedef unsigned long long ull;
    const int mod = 1e9 + 7;
    const double eps = 1e-6;
    const int inf = 0x3f3f3f3f;
    const int N = 2e5 + 10;
    
    ll fac[N];
    ll cal(ll k, ll x, ll y)
    {
        if (k == 0)
            return 0;
        ll len = fac[k], cnt = fac[k * 2];
        if (x < len / 3) {
            if (y < len / 3)
                return cal(k - 1, x, y);
            if (y < len * 2 / 3)
                return cnt / 9 + cal(k - 1, len / 3 - x - 1, y - len / 3);
            return cnt / 9 * 2 + cal(k - 1, x, y - 2 * len / 3);
        } else if (x < len * 2 / 3) {
            if (y < len / 3)
                return cnt / 9 * 5 + cal(k - 1, x - len / 3, len / 3 - y - 1);
            if (y < len * 2 / 3)
                return cnt / 9 * 4 + cal(k - 1, x - len / 3, y - len / 3);
            return cnt / 9 * 3 + cal(k - 1, x - len / 3, len - y - 1);
        } else {
            if (y < len / 3)
                return cnt / 9 * 6 + cal(k - 1, x - len * 2 / 3, y);
            if (y < len * 2 / 3)
                return cnt / 9 * 7 + cal(k - 1, len - 1 - x, y - len / 3);
            return cnt / 9 * 8 + cal(k - 1, x - len * 2 / 3, y - len * 2 / 3);
        }
    }
    int main()
    {
        fac[0] = 1;
        for (int i = 1; i <= 100; i++) {
            fac[i] = fac[i - 1] * 3;
        }
        ll k, x1, y1, x2, y2;
        scanf("%lld%lld%lld%lld%lld", &k, &x1, &y1, &x2, &y2);
        ll a = cal(k, x1, y1);
        ll b = cal(k, x2, y2);
        printf("%lld\n", abs(a - b));
        return 0;
    }
    
  • 相关阅读:
    如何修改光圈,焦距等摄像头相关信息
    白平衡是什么?怎么理解白平衡?
    如何在 kernel 和 hal 层读取同一个标志
    相机知识问答
    HDR 拍照模式的原理,实现及应用
    MTK android 工程中如何修改照片详细信息中机型名
    反差式对焦浅析
    android Camera 如何判断当前使用的摄像头是前置还是后置
    android Camera 录像时旋转角度
    android Camera 中添加一种场景模式
  • 原文地址:https://www.cnblogs.com/valk3/p/14036850.html
Copyright © 2020-2023  润新知