Milk Patterns
题意
给出n个数字,以及一个k,求至少出现k次的最长子序列的长度
思路
和poj 1743思路差不多,二分长度,把后缀分成若干组,每组任意后缀公共前缀都>=当前二分的长度。统计是否有某个组后缀数量>=k,如果有当前长度就可以。
代码
// #include <bits/stdc++.h>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
int sa[N], rk[N], oldrk[N], cnt[N], pos[N], ht[N], n, m, x;
int arr[N];
bool cmp(int a, int b, int k)
{
return oldrk[a] == oldrk[b] && oldrk[a + k] == oldrk[b + k];
}
void getsa()
{
memset(cnt, 0, sizeof(cnt));
m = 1000010;
for (int i = 1; i <= n; i++)
++cnt[rk[i] = (arr[i] + 1)];
for (int i = 1; i <= m; i++)
cnt[i] += cnt[i - 1];
for (int i = n; i; i--)
sa[cnt[rk[i]]--] = i;
for (int k = 1; k <= n; k <<= 1)
{
int num = 0;
for (int i = n - k + 1; i <= n; i++)
pos[++num] = i;
for (int i = 1; i <= n; i++)
{
if (sa[i] > k)
pos[++num] = sa[i] - k;
}
memset(cnt, 0, sizeof(cnt));
for (int i = 1; i <= n; i++)
++cnt[rk[i]];
for (int i = 1; i <= m; i++)
cnt[i] += cnt[i - 1];
for (int i = n; i; i--)
sa[cnt[rk[pos[i]]]--] = pos[i];
memcpy(oldrk, rk, sizeof(rk));
num = 0;
for (int i = 1; i <= n; i++)
rk[sa[i]] = cmp(sa[i], sa[i - 1], k) ? num : ++num;
if (num == n)
break;
m = num;
}
for (int i = 1; i <= n; i++)
rk[sa[i]] = i;
int k = 0;
for (int i = 1; i <= n; i++)
{
if (k)
--k;
while (arr[i + k] == arr[sa[rk[i] - 1] + k])
++k;
ht[rk[i]] = k;
}
}
int judge(int len)
{
int num = 1;
for (int i = 2; i <= n; i++)
{
if (ht[i] >= len)
++num;
else
num = 1;
if (num >= x)
return 1;
}
return 0;
}
int main()
{
while (~scanf("%d%d", &n, &x))
{
for (int i = 1; i <= n; i++)
scanf("%d", &arr[i]);
getsa();
int l = 0, r = n, ans = 0;
while (l <= r)
{
int mid = (l + r) / 2;
if (judge(mid))
{
ans = mid;
l = mid + 1;
}
else
r = mid - 1;
}
printf("%d
", ans);
}
return 0;
}