• caffe-ssd使用预训练模型做目标检测


    首先参考https://www.jianshu.com/p/4eaedaeafcb4

    这是一个傻瓜似的目标检测样例,目前还不清楚图片怎么转换,怎么验证,后续继续跟进

    • 模型测试
      (1)图片数据集上测试
    python examples/ssd/score_ssd_pascal.py
    

    输出为

    I0505 10:32:27.929069 16272 caffe.cpp:155] Finetuning from models/VGGNet/VOC0712/SSD_300x300/VGG_VOC0712_SSD_300x300_iter_120000.caffemodel
    I0505 10:32:28.052016 16272 net.cpp:761] Ignoring source layer mbox_loss
    I0505 10:32:28.053956 16272 caffe.cpp:251] Starting Optimization
    I0505 10:32:28.053966 16272 solver.cpp:294] Solving VGG_VOC0712_SSD_300x300_train
    I0505 10:32:28.053969 16272 solver.cpp:295] Learning Rate Policy: multistep
    I0505 10:32:28.197612 16272 solver.cpp:332] Iteration 0, loss = 1.45893
    I0505 10:32:28.197657 16272 solver.cpp:433] Iteration 0, Testing net (#0)
    I0505 10:32:28.213793 16272 net.cpp:693] Ignoring source layer mbox_loss
    I0505 10:42:04.390517 16272 solver.cpp:546]     Test net output #0: detection_eval = 0.570833
    I0505 10:42:04.414819 16272 solver.cpp:337] Optimization Done.
    I0505 10:42:04.414847 16272 caffe.cpp:254] Optimization Done.
    
    作者:Ericzhang922
    链接:https://www.jianshu.com/p/4eaedaeafcb4
    來源:简书
    简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
    View Code

    可以看到图片数据集上的检测结果为57.0833%。利用python examples/ssd/ssd_detect.py可以用单张图片测试检测效果(注意文件内加载文件的路径,如果报错修改为绝对路径):

     
     

    可以得到如下结果

    然后来看ssd_detect.py中的代码

    #encoding=utf8
    '''
    Detection with SSD
    In this example, we will load a SSD model and use it to detect objects.
    '''
    
    import os
    import sys
    import argparse
    import numpy as np
    from PIL import Image, ImageDraw
    # Make sure that caffe is on the python path:
    caffe_root = './'
    os.chdir(caffe_root)
    sys.path.insert(0, os.path.join(caffe_root, 'python'))
    import caffe
    
    from google.protobuf import text_format
    from caffe.proto import caffe_pb2
    
    
    def get_labelname(labelmap, labels):
        num_labels = len(labelmap.item)
        labelnames = []
        if type(labels) is not list:
            labels = [labels]
        for label in labels:
            found = False
            for i in xrange(0, num_labels):
                if label == labelmap.item[i].label:
                    found = True
                    labelnames.append(labelmap.item[i].display_name)
                    break
            assert found == True
        return labelnames
    
    class CaffeDetection:
        def __init__(self, gpu_id, model_def, model_weights, image_resize, labelmap_file):
            caffe.set_device(gpu_id)
            caffe.set_mode_gpu()
    
            self.image_resize = image_resize
            # Load the net in the test phase for inference, and configure input preprocessing.
            self.net = caffe.Net(model_def,      # defines the structure of the model
                                 model_weights,  # contains the trained weights
                                 caffe.TEST)     # use test mode (e.g., don't perform dropout)
             # input preprocessing: 'data' is the name of the input blob == net.inputs[0]
            self.transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape})
            self.transformer.set_transpose('data', (2, 0, 1))
            self.transformer.set_mean('data', np.array([104, 117, 123])) # mean pixel
            # the reference model operates on images in [0,255] range instead of [0,1]
            self.transformer.set_raw_scale('data', 255)
            # the reference model has channels in BGR order instead of RGB
            self.transformer.set_channel_swap('data', (2, 1, 0))
    
            # load PASCAL VOC labels
            file = open(labelmap_file, 'r')
            self.labelmap = caffe_pb2.LabelMap()
            text_format.Merge(str(file.read()), self.labelmap)
    
        def detect(self, image_file, conf_thresh=0.5, topn=5):
            '''
            SSD detection
            '''
            # set net to batch size of 1
            # image_resize = 300
            self.net.blobs['data'].reshape(1, 3, self.image_resize, self.image_resize)
            image = caffe.io.load_image(image_file)
    
            #Run the net and examine the top_k results
            transformed_image = self.transformer.preprocess('data', image)
            self.net.blobs['data'].data[...] = transformed_image
    
            # Forward pass.
            detections = self.net.forward()['detection_out']
    
            # Parse the outputs.
            det_label = detections[0,0,:,1]
            det_conf = detections[0,0,:,2]
            det_xmin = detections[0,0,:,3]
            det_ymin = detections[0,0,:,4]
            det_xmax = detections[0,0,:,5]
            det_ymax = detections[0,0,:,6]
    
            # Get detections with confidence higher than 0.6.
            top_indices = [i for i, conf in enumerate(det_conf) if conf >= conf_thresh]
    
            top_conf = det_conf[top_indices]
            top_label_indices = det_label[top_indices].tolist()
            top_labels = get_labelname(self.labelmap, top_label_indices)
            top_xmin = det_xmin[top_indices]
            top_ymin = det_ymin[top_indices]
            top_xmax = det_xmax[top_indices]
            top_ymax = det_ymax[top_indices]
    
            result = []
            for i in xrange(min(topn, top_conf.shape[0])):
                xmin = top_xmin[i] # xmin = int(round(top_xmin[i] * image.shape[1]))
                ymin = top_ymin[i] # ymin = int(round(top_ymin[i] * image.shape[0]))
                xmax = top_xmax[i] # xmax = int(round(top_xmax[i] * image.shape[1]))
                ymax = top_ymax[i] # ymax = int(round(top_ymax[i] * image.shape[0]))
                score = top_conf[i]
                label = int(top_label_indices[i])
                label_name = top_labels[i]
                result.append([xmin, ymin, xmax, ymax, label, score, label_name])
            return result
    
    def main(args):
        '''main '''
        detection = CaffeDetection(args.gpu_id,
                                   args.model_def, args.model_weights,
                                   args.image_resize, args.labelmap_file)
        result = detection.detect(args.image_file)
        print result
    
        img = Image.open(args.image_file)
        draw = ImageDraw.Draw(img)
        width, height = img.size
        print width, height
        for item in result:
            xmin = int(round(item[0] * width))
            ymin = int(round(item[1] * height))
            xmax = int(round(item[2] * width))
            ymax = int(round(item[3] * height))
            draw.rectangle([xmin, ymin, xmax, ymax], outline=(255, 0, 0))
            draw.text([xmin, ymin], item[-1] + str(item[-2]), (0, 0, 255))
            print item
            print [xmin, ymin, xmax, ymax]
            print [xmin, ymin], item[-1]
        img.save('detect_result.jpg')
    
    
    def parse_args():
        '''parse args'''
        parser = argparse.ArgumentParser()
        parser.add_argument('--gpu_id', type=int, default=0, help='gpu id')
        parser.add_argument('--labelmap_file',
                            default='data/VOC0712/labelmap_voc.prototxt')
        parser.add_argument('--model_def',
                            default='models/VGGNet/VOC0712/SSD_300x300/deploy.prototxt')
        parser.add_argument('--image_resize', default=300, type=int)
        parser.add_argument('--model_weights',
                            default='models/VGGNet/VOC0712/SSD_300x300/'
                            'VGG_VOC0712_SSD_300x300_iter_120000.caffemodel')
        parser.add_argument('--image_file', default='examples/images/fish-bike.jpg')
        return parser.parse_args()
    
    if __name__ == '__main__':
        main(parse_args())
    View Code

    首先看传参这部分

    def parse_args():
        '''parse args'''
        parser = argparse.ArgumentParser()
        parser.add_argument('--gpu_id', type=int, default=0, help='gpu id')
        parser.add_argument('--labelmap_file',
                            default='data/VOC0712/labelmap_voc.prototxt')
        parser.add_argument('--model_def',
                            default='models/VGGNet/VOC0712/SSD_300x300/deploy.prototxt')
        parser.add_argument('--image_resize', default=300, type=int)
        parser.add_argument('--model_weights',
                            default='models/VGGNet/VOC0712/SSD_300x300/'
                            'VGG_VOC0712_SSD_300x300_iter_120000.caffemodel')
        parser.add_argument('--image_file', default='examples/images/fish-bike.jpg')
        return parser.parse_args()

    通过这部分的代码,我们可以看到进行检测时与训练时不一样,不需要对图片格式进行转换,直接输入原始图片就可以

    所以,利用此命令 python ./examples/ssd/ssd_detect.py --image_file examples/images/fish-bike.jpg  可以指定用来检测的图片,

    根据自己图片的位置,调整参数 python ./examples/ssd/ssd_detect.py --image_file ~/dataset/img_test/p1.jpg ,又因为需要进行时间统计,所以对代码进行修改。加入时间统计的函数,如下

    #encoding=utf8
    '''
    Detection with SSD
    In this example, we will load a SSD model and use it to detect objects.
    '''
    
    import os
    import sys
    import argparse
    import numpy as np
    from PIL import Image, ImageDraw
    import time
    # Make sure that caffe is on the python path:
    caffe_root = './'
    os.chdir(caffe_root)
    sys.path.insert(0, os.path.join(caffe_root, 'python'))
    import caffe
    
    from google.protobuf import text_format
    from caffe.proto import caffe_pb2
    
    
    def get_labelname(labelmap, labels):
        num_labels = len(labelmap.item)
        labelnames = []
        if type(labels) is not list:
            labels = [labels]
        for label in labels:
            found = False
            for i in xrange(0, num_labels):
                if label == labelmap.item[i].label:
                    found = True
                    labelnames.append(labelmap.item[i].display_name)
                    break
            assert found == True
        return labelnames
    
    class CaffeDetection:
        def __init__(self, gpu_id, model_def, model_weights, image_resize, labelmap_file):
            caffe.set_device(gpu_id)
            caffe.set_mode_gpu()
    
            self.image_resize = image_resize
            # Load the net in the test phase for inference, and configure input preprocessing.
            self.net = caffe.Net(model_def,      # defines the structure of the model
                                 model_weights,  # contains the trained weights
                                 caffe.TEST)     # use test mode (e.g., don't perform dropout)
             # input preprocessing: 'data' is the name of the input blob == net.inputs[0]
            self.transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape})
            self.transformer.set_transpose('data', (2, 0, 1))
            self.transformer.set_mean('data', np.array([104, 117, 123])) # mean pixel
            # the reference model operates on images in [0,255] range instead of [0,1]
            self.transformer.set_raw_scale('data', 255)
            # the reference model has channels in BGR order instead of RGB
            self.transformer.set_channel_swap('data', (2, 1, 0))
    
            # load PASCAL VOC labels
            file = open(labelmap_file, 'r')
            self.labelmap = caffe_pb2.LabelMap()
            text_format.Merge(str(file.read()), self.labelmap)
    
        def detect(self, image_file, conf_thresh=0.5, topn=5):
            '''
            SSD detection
            '''
            # set net to batch size of 1
            # image_resize = 300
            self.net.blobs['data'].reshape(1, 3, self.image_resize, self.image_resize)
            image = caffe.io.load_image(image_file)
    
            #Run the net and examine the top_k results
            transformed_image = self.transformer.preprocess('data', image)
            self.net.blobs['data'].data[...] = transformed_image
    
            # Forward pass.
            detections = self.net.forward()['detection_out']
    
            # Parse the outputs.
            det_label = detections[0,0,:,1]
            det_conf = detections[0,0,:,2]
            det_xmin = detections[0,0,:,3]
            det_ymin = detections[0,0,:,4]
            det_xmax = detections[0,0,:,5]
            det_ymax = detections[0,0,:,6]
    
            # Get detections with confidence higher than 0.6.
            top_indices = [i for i, conf in enumerate(det_conf) if conf >= conf_thresh]
    
            top_conf = det_conf[top_indices]
            top_label_indices = det_label[top_indices].tolist()
            top_labels = get_labelname(self.labelmap, top_label_indices)
            top_xmin = det_xmin[top_indices]
            top_ymin = det_ymin[top_indices]
            top_xmax = det_xmax[top_indices]
            top_ymax = det_ymax[top_indices]
    
            result = []
            for i in xrange(min(topn, top_conf.shape[0])):
                xmin = top_xmin[i] # xmin = int(round(top_xmin[i] * image.shape[1]))
                ymin = top_ymin[i] # ymin = int(round(top_ymin[i] * image.shape[0]))
                xmax = top_xmax[i] # xmax = int(round(top_xmax[i] * image.shape[1]))
                ymax = top_ymax[i] # ymax = int(round(top_ymax[i] * image.shape[0]))
                score = top_conf[i]
                label = int(top_label_indices[i])
                label_name = top_labels[i]
                result.append([xmin, ymin, xmax, ymax, label, score, label_name])
            return result
    
    def main(args):
        '''main '''
        start = time.time()
        detection = CaffeDetection(args.gpu_id,
                                   args.model_def, args.model_weights,
                                   args.image_resize, args.labelmap_file)
        
        result = detection.detect(args.image_file)
        end = time.time()
        print('time:
    ')
        print str(end-start)
    
        with open('./mcode/ssd_outputs.txt', 'a') as f:
            f.write('
    ')
            f.write(str(end-start))
    
    
        print result
    
    
    
        img = Image.open(args.image_file)
        draw = ImageDraw.Draw(img)
        width, height = img.size
        print width, height
        for item in result:
            xmin = int(round(item[0] * width))
            ymin = int(round(item[1] * height))
            xmax = int(round(item[2] * width))
            ymax = int(round(item[3] * height))
            draw.rectangle([xmin, ymin, xmax, ymax], outline=(255, 0, 0))
            draw.text([xmin, ymin], item[-1] + str(item[-2]), (0, 0, 255))
            print item
            print [xmin, ymin, xmax, ymax]
            print [xmin, ymin], item[-1]
        img.save('detect_result.jpg')
    
    
    def parse_args():
        '''parse args'''
        parser = argparse.ArgumentParser()
        parser.add_argument('--gpu_id', type=int, default=0, help='gpu id')
        parser.add_argument('--labelmap_file',
                            default='data/VOC0712/labelmap_voc.prototxt')
        parser.add_argument('--model_def',
                            default='models/VGGNet/VOC0712/SSD_300x300/deploy.prototxt')
        parser.add_argument('--image_resize', default=300, type=int)
        parser.add_argument('--model_weights',
                            default='models/VGGNet/VOC0712/SSD_300x300/'
                            'VGG_VOC0712_SSD_300x300_iter_120000.caffemodel')
        parser.add_argument('--image_file', default='examples/images/fish-bike.jpg')
        return parser.parse_args()
    
    if __name__ == '__main__':
        main(parse_args())
    View Code

    将文件修改后的文件放在/caffe/mcode/文件夹中,执行 python ./mcode/ssd_detect.py --image_file ~/dataset/img_test/p1.jpg 

    在weiliu89/caffe开源了三款数据集的fine-tuning模型,PASCAL VOC models、COCO models、ILSVRC models。
    PASCAL VOC models:20分类
    COCO models:80分类
    ILSVRC models:1000分类

    目前默认的模型应该是由vgg16搭建而来

  • 相关阅读:
    bat 命令如何启动远程PC上的一个程序
    Python的内置list类
    Python3的列表推导式
    python3修改Excel中固定单元格的内容
    python3“腌制”数据
    python3用print写数据到文件中
    github在线预览项目(html)
    github简单上手
    事件DOMContentLoaded和load的区别
    jquery 一些事件
  • 原文地址:https://www.cnblogs.com/vactor/p/9812719.html
Copyright © 2020-2023  润新知