执行wordcount
代码
package org.apache.hadoop.examples; import java.io.IOException; import java.util.Iterator; import java.util.StringTokenizer; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.TextInputFormat; import org.apache.hadoop.mapred.TextOutputFormat; public class WordCount { public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); } } } public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } } public static void main(String[] args) throws Exception { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); } }
首先进行编译:
javac -classpath ./share/hadoop/common/hadoop-common-2.7.6.jar:./share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.7.6.jar -d WordCount ./WordCount/WordCount.java
然后压包
jar -cvf wordcount.jar org/*
在复制到hadoop的工作目录下
然后在hadoop工作目录下面新建一个input目录 mkdir input,在目录里面新建一个文件vi file1,输入以下内容:
hello world
hello hadoop
hello mapreduce
,把该文件上传到hadoop的分布式文件系统中去
- ./bin/hadoop fs -put input/file* input
(6)然后我们开始执行
- ./bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input wordcount_output
(7)最后我们查看运行结果
- ./bin/hadoop fs -cat wordcount_output/part-r-00000
参考:
http://cardyn.iteye.com/blog/1356361
https://blog.csdn.net/qichangleixin/article/details/43376587
二.往hdfs写数据
java代码
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import java.io.*; import java.net.URI; /** * blog: http://www.iteblog.com/ * Date: 14-1-2 * Time: 下午6:09 */ public class AppendContent { public static void main(String[] args) { String hdfs_path = "input/file1";//文件路径 Configuration conf = new Configuration(); conf.setBoolean("dfs.support.append", true); String inpath = "./append.txt"; FileSystem fs = null; try { fs = FileSystem.get(URI.create(hdfs_path), conf); //要追加的文件流,inpath为文件 InputStream in = new BufferedInputStream(new FileInputStream(inpath)); OutputStream out = fs.append(new Path(hdfs_path)); IOUtils.copyBytes(in, out, 4096, true); } catch (IOException e) { e.printStackTrace(); } } }
注意指定的hdfs路径,用hdfs://localhost:9000/input/路径一直不行,不知道什么原因。
编译
javac -classpath ./share/hadoop/common/hadoop-common-2.7.6.jar:./share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.7.6.jar -d ./classes ./my_append/AppendContent.java
压包
jar -cvf ./my_jar/append.jar ./classes/*
运行
./bin/hadoop jar ./my_jar/append.jar AppendContent
AppendContent是类的名字
查看
./bin/hdfs dfs -cat input/*
或者代码可以改为通过args传参的方式传入hdfs路径, 方便多进程操作
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FSDataOutputStream; import java.io.*; import java.net.URI; /** * blog: http://www.iteblog.com/ * Date: 14-1-2 * Time: 下午6:09 */ public class AppendContent { public static void main(String[] args) { //String hdfs_path = "input/file1";//文件路径 String hdfs_path = args[0]; Configuration conf = new Configuration(); conf.setBoolean("dfs.support.append", true); //String inpath = "./append.txt"; FileSystem fs = null; try { fs = FileSystem.get(URI.create(hdfs_path), conf); FSDataOutputStream out = fs.append(new Path(hdfs_path)); String s=""; for(int i=0;i<10;i++) { for(int j=0;j<1024;j++) { s+='a'; } int readLen = s.getBytes().length; out.write(s.getBytes(), 0, readLen); } //int readLen = "0123456789".getBytes().length; //while (-1 != readLen) //out.write("0123456789".getBytes(), 0, readLen); //要追加的文件流,inpath为文件 //InputStream in = new // BufferedInputStream(new FileInputStream(inpath)); //OutputStream out = fs.append(new Path(hdfs_path)); //IOUtils.copyBytes(in, out, 4096, true); } catch (IOException e) { e.printStackTrace(); } } }
编译与压包命令同上,执行命令如下
./bin/hadoop jar ./my_jar/append.jar AppendContent input/file1
参考:https://blog.csdn.net/jameshadoop/article/details/24179413
https://blog.csdn.net/wypblog/article/details/17914021
脚本
#!/bin/bash #开始时间 begin=$(date +%s%N) for ((i=0; i<7;i++)) do { ./bin/hadoop jar ./my_jar/append.jar AppendContent input/file${i} } done wait #结束时间 end=$(date +%s%N) #spend=$(expr $end - $begin) use_tm=`echo $end $begin | awk '{ print ($1 - $2) / 1000000000}'` echo "花费时间为$use_tm"
二. java在ext3中的测试
程序
import java.io.*; import java.net.URI; import java.io.BufferedWriter; import java.io.File; import java.io.FileOutputStream; import java.io.FileWriter; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.RandomAccessFile; public class Toext3 { public static void main(String[] args) { //String hdfs_path = "input/file1";//文件路径 String ext3_path = args[0]; FileWriter writer = null; //String inpath = "./append.txt"; try { String s=""; for(int i=0;i<10;i++) { s=""; for(int j=0;j<1024;j++) { s+='b'; } writer = new FileWriter(ext3_path, true); writer.write(s); System.out.println(ext3_path); } } catch (IOException e) { e.printStackTrace(); }finally { try { if(writer != null){ writer.close(); } } catch (IOException e) { e.printStackTrace(); } } } }
编译:
javac -classpath ./share/hadoop/common/hadoop-common-2.7.6.jar:./share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.7.6.jar -d ./data/classes data/Toext3.java
运行
java -cp ./data/classes/ Toext3 ./data/ext3/file0
在运行中,-cp指明class文件的路径,Toext3指出要运行的类