• hadoop相关


    执行wordcount

    代码

    package org.apache.hadoop.examples;
    
    import java.io.IOException;
    import java.util.Iterator;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapred.FileInputFormat;
    import org.apache.hadoop.mapred.FileOutputFormat;
    import org.apache.hadoop.mapred.JobClient;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.mapred.MapReduceBase;
    import org.apache.hadoop.mapred.Mapper;
    import org.apache.hadoop.mapred.OutputCollector;
    import org.apache.hadoop.mapred.Reducer;
    import org.apache.hadoop.mapred.Reporter;
    import org.apache.hadoop.mapred.TextInputFormat;
    import org.apache.hadoop.mapred.TextOutputFormat;
    
    public class WordCount {
    
        public static class Map extends MapReduceBase implements
                Mapper<LongWritable, Text, Text, IntWritable> {
            private final static IntWritable one = new IntWritable(1);
            private Text word = new Text();
    
            public void map(LongWritable key, Text value,
                    OutputCollector<Text, IntWritable> output, Reporter reporter)
                    throws IOException {
                String line = value.toString();
                StringTokenizer tokenizer = new StringTokenizer(line);
                while (tokenizer.hasMoreTokens()) {
                    word.set(tokenizer.nextToken());
                    output.collect(word, one);
                }
            }
        }
    
        public static class Reduce extends MapReduceBase implements
                Reducer<Text, IntWritable, Text, IntWritable> {
            public void reduce(Text key, Iterator<IntWritable> values,
                    OutputCollector<Text, IntWritable> output, Reporter reporter)
                    throws IOException {
                int sum = 0;
                while (values.hasNext()) {
                    sum += values.next().get();
                }
                output.collect(key, new IntWritable(sum));
            }
        }
    
        public static void main(String[] args) throws Exception {
            JobConf conf = new JobConf(WordCount.class);
            conf.setJobName("wordcount");
    
            conf.setOutputKeyClass(Text.class);
            conf.setOutputValueClass(IntWritable.class);
    
            conf.setMapperClass(Map.class);
            conf.setCombinerClass(Reduce.class);
            conf.setReducerClass(Reduce.class);
    
            conf.setInputFormat(TextInputFormat.class);
            conf.setOutputFormat(TextOutputFormat.class);
    
            FileInputFormat.setInputPaths(conf, new Path(args[0]));
            FileOutputFormat.setOutputPath(conf, new Path(args[1]));
    
            JobClient.runJob(conf);
        }
    }
    View Code

    首先进行编译:

    javac -classpath ./share/hadoop/common/hadoop-common-2.7.6.jar:./share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.7.6.jar -d WordCount ./WordCount/WordCount.java
    View Code

     然后压包

    jar -cvf wordcount.jar org/*
    View Code

    在复制到hadoop的工作目录下

    然后在hadoop工作目录下面新建一个input目录 mkdir input,在目录里面新建一个文件vi file1,输入以下内容: 
    hello world 
    hello hadoop 
    hello mapreduce 
    ,把该文件上传到hadoop的分布式文件系统中去 

    Shell代码  收藏代码
    1. ./bin/hadoop fs -put input/file* input  


    (6)然后我们开始执行 

    Shell代码  收藏代码
    1. ./bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input wordcount_output  


    (7)最后我们查看运行结果 

    Shell代码  收藏代码
      1. ./bin/hadoop fs -cat wordcount_output/part-r-00000  

    参考:

    http://cardyn.iteye.com/blog/1356361

    https://blog.csdn.net/qichangleixin/article/details/43376587

    二.往hdfs写数据

    java代码

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IOUtils;
    
    import java.io.*;
    import java.net.URI;
    
    /**
     * blog: http://www.iteblog.com/
     * Date: 14-1-2
     * Time: 下午6:09
     */
    public class AppendContent {
        public static void main(String[] args) {
            String hdfs_path = "input/file1";//文件路径
            Configuration conf = new Configuration();
            conf.setBoolean("dfs.support.append", true);
    
            String inpath = "./append.txt";
            FileSystem fs = null;
            try {
                fs = FileSystem.get(URI.create(hdfs_path), conf);
                //要追加的文件流,inpath为文件
                InputStream in = new 
                      BufferedInputStream(new FileInputStream(inpath));
                OutputStream out = fs.append(new Path(hdfs_path));
                IOUtils.copyBytes(in, out, 4096, true);
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }  
    View Code

    注意指定的hdfs路径,用hdfs://localhost:9000/input/路径一直不行,不知道什么原因。

    编译

    javac -classpath ./share/hadoop/common/hadoop-common-2.7.6.jar:./share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.7.6.jar -d ./classes ./my_append/AppendContent.java
    View Code

    压包

    jar -cvf ./my_jar/append.jar ./classes/*
    View Code

    运行

    ./bin/hadoop jar ./my_jar/append.jar AppendContent
    View Code

    AppendContent是类的名字

    查看

    ./bin/hdfs dfs -cat input/*
    View Code

    或者代码可以改为通过args传参的方式传入hdfs路径, 方便多进程操作

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IOUtils;
    import org.apache.hadoop.fs.FSDataInputStream;  
    import org.apache.hadoop.fs.FSDataOutputStream; 
    
    import java.io.*;
    import java.net.URI;
    
    /**
     * blog: http://www.iteblog.com/
     * Date: 14-1-2
     * Time: 下午6:09
     */
    public class AppendContent {
        public static void main(String[] args) {
            //String hdfs_path = "input/file1";//文件路径
            String hdfs_path = args[0];
            Configuration conf = new Configuration();
            conf.setBoolean("dfs.support.append", true);
    
    
    
            //String inpath = "./append.txt";
            FileSystem fs = null;
            try {
                fs = FileSystem.get(URI.create(hdfs_path), conf);
                FSDataOutputStream out = fs.append(new Path(hdfs_path));
    
    
                String s="";
                for(int i=0;i<10;i++)
                {
                    for(int j=0;j<1024;j++)
                    {
                        s+='a';
                    }
                    int readLen = s.getBytes().length;
                    out.write(s.getBytes(), 0, readLen); 
                }
    
                //int readLen = "0123456789".getBytes().length;    
    
                //while (-1 != readLen) 
                    
                //out.write("0123456789".getBytes(), 0, readLen); 
                
                //要追加的文件流,inpath为文件
                //InputStream in = new 
                //      BufferedInputStream(new FileInputStream(inpath));
                //OutputStream out = fs.append(new Path(hdfs_path));
                //IOUtils.copyBytes(in, out, 4096, true);
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }  
    View Code

    编译与压包命令同上,执行命令如下

    ./bin/hadoop jar ./my_jar/append.jar AppendContent input/file1
    View Code

    参考:https://blog.csdn.net/jameshadoop/article/details/24179413

    https://blog.csdn.net/wypblog/article/details/17914021

     脚本

    #!/bin/bash
    
    #开始时间
    begin=$(date +%s%N)
    
    
    for ((i=0; i<7;i++))
    do
        {
            ./bin/hadoop jar ./my_jar/append.jar AppendContent input/file${i}
        }
    done
    
    wait
    #结束时间
    end=$(date +%s%N)
    #spend=$(expr $end - $begin)
    
    use_tm=`echo $end $begin | awk '{ print ($1 - $2) / 1000000000}'`
    echo "花费时间为$use_tm"
    View Code

    二. java在ext3中的测试

    程序

    import java.io.*;
    import java.net.URI;
    import java.io.BufferedWriter;  
    import java.io.File;  
    import java.io.FileOutputStream;  
    import java.io.FileWriter;  
    import java.io.IOException;  
    import java.io.OutputStreamWriter;  
    import java.io.RandomAccessFile;
    
    public class Toext3 {
        public static void main(String[] args) {
            //String hdfs_path = "input/file1";//文件路径
            String ext3_path = args[0];
            FileWriter writer = null;
            //String inpath = "./append.txt";
            try {
                String s="";
                for(int i=0;i<10;i++)
                {
                    s="";
                    for(int j=0;j<1024;j++)
                    {
                        s+='b';
                    }
                    writer = new FileWriter(ext3_path, true); 
                    writer.write(s);
                    System.out.println(ext3_path);
                }
    
            } catch (IOException e) {
              e.printStackTrace();
            }finally {     
                try {     
                    if(writer != null){  
                        writer.close();     
                    }  
                } catch (IOException e) {     
                    e.printStackTrace();     
                }     
            }
            
      }
    }  
    View Code

    编译:

    javac -classpath ./share/hadoop/common/hadoop-common-2.7.6.jar:./share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.7.6.jar -d ./data/classes data/Toext3.java
    View Code

    运行

    java -cp ./data/classes/ Toext3 ./data/ext3/file0 
    View Code

    在运行中,-cp指明class文件的路径,Toext3指出要运行的类

  • 相关阅读:
    五、批量插入
    四、操作BLOB类型字段
    三、使用PreparedStatement实现CRUD操作
    二、获取数据库连接
    一、JDBC概述
    最短平均码长(挑出假硬币问题的解法)
    信息量和信息熵
    洛谷P2114
    Servlet续(HttpServletRequest类和HttpServletResponse类)
    Servlet
  • 原文地址:https://www.cnblogs.com/vactor/p/9085467.html
Copyright © 2020-2023  润新知