转载. 为方便理解, 在原博客的基础上加部分注释, 原博客地址:http://www.cnblogs.com/CsOH/p/6049117.html
今天终于用模拟退火过了一道题:CodeVS: P1344。
有 N ( <=20 ) 台 PC 放在机房内,现在要求由你选定一台 PC,用共 N-1 条网线从这台机器开始一台接一台地依次连接他们,最后接到哪个以及连接的顺序也是由你选定的,为了节省材料,网线都拉直。求最少需要一次性购买多长的网线。(说白了,就是找出 N 的一个排列 P1 P2 P3 ..PN 然后 P1 -> P2 -> P3 -> ... -> PN 找出 |P1P2|+|P2P3|+...+|PN-1PN| 长度的最小值)
这种问题被称为最优组合问题。传统的动态规划算法O(n22n)在n = 20的情况下空间、时间、精度都不能满足了。这时应该使用比较另类的算法。随机化算法在n比较小的最优化问题表现较好,我们尝试使用随机化算法。
#include<cstdio> #include<cstdlib> #include<ctime> #include<cmath> #include<algorithm> const int maxn = 21; double x[maxn], y[maxn]; double dist[maxn][maxn]; int path[maxn]; int n; double path_dist(){ double ans = 0; for(int i = 1; i < n; i++) { ans += dist[path[i - 1]][path[i]]; } return ans; } int main(){ srand(19260817U); // 使用确定的种子初始化随机函数是不错的选择 scanf("%d", &n); for(int i = 0; i < n; i++) scanf("%lf%lf", x + i, y + i); for(int i = 0; i < n; i++) for(int j = i + 1; j < n; j++) dist[i][j] = dist[j][i] = hypot(x[i] - x[j], y[i] - y[j]); for(int i = 0; i < n; i++) path[i] = i; // 获取初始排列 double ans = path_dist(); // 初始答案 int T = 30000000 / n; // 单次计算的复杂度是O(n),这里的30000000是试出来的 while(T--){ std::random_shuffle(path, path + n); // 随机打乱排列 ans = std::min(ans, path_dist()); // 更新最小值 } printf("%.2lf", ans); }
可惜的是,这个算法只能拿50分。使用O(n!)枚举排列和使用上述算法没有太大的不同。从解的角度分析,假如某一次计算尝试出了一个比较好的路径,那么最优的路径很可能可以在原基础上作一两次改动就可以得到,这时候完全打乱整个序列不是一个很好的选择。
另一个方法:根据原序列生成一个新的序列,然后交换新序列的任意两个数。假如说新生成的序列更优,则使用新序列继续计算,否则序列不变。
这个算法就是局部搜索法(爬山法)。可惜,这个算法不正确。这个算法只顾眼前,忽略了大局,只要更优便走,这样可能会造成“盯着眼前的小山包,忽略远处的最高峰”,找到的值往往只是“局部最优值”。当然——这个方法也并不是完全不正确。我们可以多次计算使用上述方法计算,取最值。这里不再赘述。
下面介绍退火算法(SA,Simulated Annealing)。
首先拿爬山做例子:我们要找到山脉的最高峰,但是我(计算机)只能看到我的脚下哪边是上升的,哪边是下降的,看不到远处是否上升。每次移动,我们随机选择一个方向。如果这个方向是上升的的(更优),那么就决定往那个方向走;如果这个方向是下降的(更差),那么“随机地接受”这个方向,接受就走,不接受就再随机一次——这个随机是关键,要考虑很多因素。比如,一个陡的下坡的接受率要比一个缓的下坡要小(因为陡的下坡后是答案的概率小);同样的下降坡度,接受的概率随时间降低(逐渐降低才能趋向稳定)。
为什么要接受一个更差的解呢?如下图所示:
如果坚决不接受一个更差的解,那么就会卡在上面的“当前位置”上了。倘若接受多几次更差的解,让他移动到山谷那里,则可以突破局部最优解,得到全局最优解。
既然这个随机这么重要,那么我们就将它写为一个函数:
bool accept(double delta, double temper){ if(delta <= 0) return true; return rand() <= exp((-delta) / temper) * RAND_MAX; }
其中delta是新答案的变化量,temper是当前的“温度”。温度是模拟退火算法的一个重要概念,它随时间的推移缓慢减小。我们来分析一下这个代码:
if(delta <= 0) return true;
由于答案越小越优,因此当温度的变化量小于零(新答案减小)时,新解比旧解优,因此返回“接受”
return rand() <= exp((-delta) / temper) * RAND_MAX;
RAND_MAX是rand()的最大值。为了保证跨平台、跨编译器甚至跨版本时的正常运作,我们不对其作出任何假定。
我们把它移项:return (double)rand() / RAND_MAX <= exp((-delta) / temper)。在右边,temper是正数,delta是正数(delta是负数的已经return出去了),因此exp()中间的参数是负数。我们知道,指数函数在参数是负数时返回(0, 1)——这就是接受的概率。我们在左边随机一个实数,如果它比概率小,就接受,否则就不接受。
然后将RAND_MAX移到右边,以省下昂贵的除法成本和避免浮点数的各种陷阱。
有了接受函数,就可以写计算过程了:
double solve(){ const double max_temper = 10000; double temp = max_temper; double dec = 0.999; Path p; while(temp > 0.1){ Path p2(p); if(accept(p2.dist() - p.dist(), temp)) p = p2; temp *= dec; } return p.dist(); }
其中Path是路径,它有一个构造函数是接受另一个Path类型的对象,然后交换其中两个点的顺序。
1 struct Path{ 2 City path[maxn]; 3 4 Path(){ 5 F(i, n) path[i] = citys[i]; 6 } 7 8 Path(const Path& p):path(p.path){ 9 swap(path[rand() % n], path[rand() % n]); 10 } 11 12 void shuffle(){ 13 random_shuffle(path, path + n); 14 } 15 16 double dist(){ 17 double ans = 0; 18 for(int i = 1; i < n; i++){ 19 ans += path[i - 1].distTo(path[i]); 20 } 21 return ans; 22 } 23 };
上文的City是路径一个点。而void shuffle()是随机打乱整个序列(在本题没有用上)。
下面是City的定义:
1 struct City{ 2 double x, y; 3 City(){} 4 City(double x, double y):x(x), y(y){} 5 double distTo(const City& rhs) const { 6 return hypot(x - rhs.x, y - rhs.y); 7 } 8 friend istream& operator >> (istream& in, City& c){ 9 return in >> c.x >> c.y; 10 } 11 }citys[maxn];
最后是程序的主框架:
1 int main(){ 2 srand(19260817U); 3 ios::sync_with_stdio(false); 4 cin >> n; 5 F(i, n) cin >> citys[i]; 6 double ans = 1./0; 7 int T = 15; 8 while(T--){ 9 ans = min(ans, solve()); 10 } 11 printf("%.2lf", ans); 12 }
完整代码如下:
#define F(i, n) for(int i = 0; i < n; i++) #define F1(i,n) for(int i = 1; i <=n; i++) #include<cmath> #include<algorithm> #include<iostream> #include<cstdio> using namespace std; const int maxn = 21; // 机器的数目 int n; struct City{ double x, y; City(){} City(double x, double y):x(x), y(y){} double distTo(const City& rhs) const { return hypot(x - rhs.x, y - rhs.y); } friend istream& operator >> (istream& in, City& c){ return in >> c.x >> c.y; } }citys[maxn]; struct Path{ City path[maxn]; Path(){ F(i, n) path[i] = citys[i]; } Path(const Path& p):path(p.path){ // 生成新的path解时用,交换两个位置的数据 swap(path[rand() % n], path[rand() % n]); } void shuffle(){ random_shuffle(path, path + n); } double dist(){ // 求解总的距离 double ans = 0; for(int i = 1; i < n; i++){ ans += path[i - 1].distTo(path[i]); } return ans; } }; bool accept(double delta, double temper){ if(delta <= 0) return true; return rand() <= exp((-delta) / temper) * RAND_MAX; } double solve(){ const double max_temper = 10000; // 初始温度 double temp = max_temper; double dec = 0.999; Path p; while(temp > 0.1){ Path p2(p); // p2是新的解, 通过Path p2(p)构造时, 会随意交换p中两个位置的数据生成p2 if(accept(p2.dist() - p.dist(), temp)) p = p2; temp *= dec; } return p.dist(); } int main(){ srand(19260817U); ios::sync_with_stdio(false); cin >> n; F(i, n) cin >> citys[i]; double ans = 1./0; // +inf大于任何数,https://www.cnblogs.com/dosrun/p/3908617.html //cout << "ans" << ans << endl; int T = 155; while(T--){ ans = min(ans, solve()); } printf("%.2lf", ans); }
其实本代码在很多地方写复杂了,比如累赘的City类。在比赛中,我们不会写得如此复杂。下面对其简化:
#include<cstring> #include<cmath> #include<algorithm> #include<iostream> #include<cstdio> using namespace std; const int maxn = 21; int n; double x[maxn], y[maxn]; double dist[maxn][maxn]; struct Path{ int path[maxn]; Path(){ for(int i = 0; i < n; i++) path[i] = i; } Path(const Path& p){ memcpy(path, p.path, sizeof path); swap(path[rand() % n], path[rand() % n]); } double dist(){ double ans = 0; for(int i = 1; i < n; i++){ ans += ::dist[path[i - 1]][path[i]]; } return ans; } }; bool accept(double delta, double temper){ if(delta <= 0) return true; return rand() <= exp((-delta) / temper) * RAND_MAX; } double solve(){ const double max_temper = 10000; const double dec = 0.999; double temp = max_temper; Path p; while(temp > 0.01){ Path p2(p); if(accept(p2.dist() - p.dist(), temp)) p = p2; temp *= dec; } return p.dist(); } int main(){ srand(19260817U); cin >> n; for(int i = 0; i < n; i++) { scanf("%lf%lf", x + i, y + i); } for(int i = 0; i < n; i++){ dist[i][i] = 0; for(int j = i + 1; j < n; j++){ dist[i][j] = dist[j][i] = hypot(x[i] - x[j], y[i] - y[j]); } } double ans = 1./0; int T = 155; while(T--){ ans = min(ans, solve()); } printf("%.2lf", ans); }
交上去就可以AC了。
由于随机化算法有一定不稳定性,这里要多次调用计算过程取最小值。T=155就是外循环次数。
值得注意的是,T=15就可以过80%的数据,T=42可以过完全部数据,此时最大数据运行时间为86ms。这里T取155是保险起见,毕竟时间足够。
上面的代码仍有改进的余地。比如,在solve()函数中,应当把最优解记下来,在返回解时返回记下的那个最优解,免得跳到了某些差解后返回差解。
下面是一张表供大家估算运行时间,左边是“降温系数”,上方是初温与末温的比值,表格内容是大致的迭代次数。
从上表可以看出,增加十倍的初温与末温比值只会增加约25%的迭代次数,而往0.9…99的后面加个9会增加十倍的运行时间。
除了记忆上表外,我们还可以通过记录退火次数(将tot初始化为零,每次产生新解时tot++,计算完后看看tot)或者使用计算器计算退火次数。计算后选择一个合适的外循环次数。
除此之外,我们还要根据数据规模,灵活地调整初温、末温与降温系数。一般来说,初温不宜太大,否则会让前几次迭代接受了很差的解,浪费时间;降温系数不宜过大,否则会让算法过早稳定,不能找到最优值;同样,降温系数也不宜太高(更不能大于1,不然温度越来越高),否则可能会超时。
在正式使用中还有些技巧,如每次降温后,做足够多次计算后才再次降温(内循环),这对算法准确性没有太大影响。
除了模拟退火外,还有不少随机化算法。比如遗传算法、蚁群算法,这些算法被称为“元启发算法”,有兴趣的读者可以查阅相关资料。