x = tf.placeholder(tf.float32) y = tf.placeholder(tf.float32) w = tf.Variable(tf.zeros([1, 1], dtype=tf.float32)) b = tf.Variable(tf.ones([1, 1], dtype=tf.float32)) y_hat = tf.add(b, tf.matmul(x, w)) ...more setup for optimization and what not... saver = tf.train.Saver() # defaults to saving all variables - in this case w and b with tf.Session() as sess: sess.run(tf.initialize_all_variables()) if FLAGS.train: for i in xrange(FLAGS.training_steps): ...training loop... if (i + 1) % FLAGS.checkpoint_steps == 0: saver.save(sess, FLAGS.checkpoint_dir + 'model.ckpt', global_step=i+1) else: # Here's where you're restoring the variables w and b. # Note that the graph is exactly as it was when the variables were # saved in a prior training run. ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) else: ...no checkpoint found... # Now you can run the model to get predictions batch_x = ...load some data... predictions = sess.run(y_hat, feed_dict={x: batch_x})