前言
前面是如何操作GPIO
进行输出,这里我重新实现了一个gpio
的驱动,可以获取外部信号的输入。gpio-demo.c中已经包括检测一个gpio
的信号,并且包含了中断和轮询两种方式,可以通过设备树里的mode
属性进行选择。
设备树
本文检测的输入引脚是GPIO3_D0
,具体的设备树如下所示;
gpio-demo {
compatible = "gpio-demo";
input-gpio = <&gpio3 RK_PD0 GPIO_ACTIVE_LOW>;
mode = <1>; // 0:poll 1:interrupt
poll_time = <1000>; //ms
};
compatible
:设备兼容属性为gpio-demo
,与后面的驱动代码中的
gpio_demo_of_match[] = { { .compatible = "gpio-demo"}, {}, }
需要相同;input-gpio
:这个属性值通过of_get_named_gpio
来获取;mode
:用于判断当前的工作模式是轮询还是中断;poll_time
:轮询模式下的周期,间隔多少毫秒会读取一次gpio
的状态;
对于设备树的解析,单独封装了一个接口;
static int gpio_parse_data(struct gpio_demo_device *di){
int ret;
struct gpio_platform_data *pdata;
struct device *dev = di->dev;
struct device_node *np = di->dev->of_node;
pdata = devm_kzalloc(di->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
return -ENOMEM;
}
di->pdata = pdata;
// set default value for platform data
pdata->mode = DEFAULT_MODE;
pdata->poll_ms = DEFAULT_POLL_TIME * 1000;
dev_info(dev,"parse platform data
");
ret = of_property_read_u32(np, "mode", &pdata->mode);
if (ret < 0) {
dev_err(dev, "can't get mode property
");
}
ret = of_property_read_u32(np, "poll_time", &pdata->poll_ms);
if (ret < 0) {
dev_err(dev, "can't get poll_ms property
");
}
pdata->gpio_index = of_get_named_gpio(np,"input-gpio", 0);
if (pdata->gpio_index < 0) {
dev_err(dev, "can't get input gpio
");
}
// debug parse device tree data
dev_info(dev, "Success:mode is %d
", pdata->mode);
dev_info(dev, "Success:gpio index is %d
", pdata->gpio_index);
return 0;
}
两个结构体
gpio_platform_data
gpio_platform_data
主要是对设备树中众多属性的封装;
struct gpio_platform_data {
int mode;
int count;
int gpio_index;
struct mutex mtx;
int poll_ms;
};
gpio_demo_device
gpio_demo_device
是与设备驱动中相关资源的封装,包括工作队列等等;
struct gpio_demo_device {
struct platform_device *pdev;
struct device *dev;
struct gpio_platform_data *pdata;
struct workqueue_struct *gpio_monitor_wq;
struct delayed_work gpio_delay_work ;
int gpio_irq;
};
两种方式
在驱动的probe
函数中,先通过gpio_parse_data
解析设备树文件,从而获取mode
属性的值:
0
:gpio_demo_init_poll
初始化进入轮询工作模式;1
:gpio_demo_init_interrupt
初始化进入中断工作模式;
static int gpio_demo_probe(struct platform_device *pdev){
...
ret = gpio_parse_data(priv);
if (ret){
dev_err(dev,"parse data failed
");
}
...
if (priv->pdata->mode == 0){
gpio_demo_init_poll(priv); //轮询
} else {
gpio_demo_init_interrupt(priv);//中断
}
}
轮询
在轮询工作模式下,已经通过gpio_demo_init_poll
对工作队列进行初始化,之后,后启动运行gpio_demo_work
任务,并在规定的调度时间内,重复检测运行这个任务。
通过gpio_get_value(gpio_index)
读取GPIO3_D0
上的电平状态,如果需要对边沿信号进行处理还需要做改动,本文只能对电平信号进行处理。
static void gpio_demo_work(struct work_struct *work) {
struct gpio_demo_device *di = container_of(work,
struct gpio_demo_device,
gpio_delay_work.work);
struct gpio_platform_data *padta = di->pdata;
int gpio_index,value;
//获取gpio索引号
gpio_index = padta->gpio_index;
if (!gpio_is_valid(gpio_index) ) {
dev_err(di->dev, "gpio is not valid
");
goto end;
}
if ( (value = gpio_get_value(gpio_index) ) == 0) {
dev_info(di->dev,"get value is %d
",value);
}else{
dev_info(di->dev,"get value is %d
",value);
}
end:
queue_delayed_work(di->gpio_monitor_wq, &di->gpio_delay_work,
msecs_to_jiffies(di->pdata->poll_ms));
}
外部中断
中断的申请和初始化在gpio_demo_init_interrupt
函数中已经实现,如下所示;
通过gpio_to_irq
接口获取相应GPIO
上的软件中断号,然后通过devm_request_irq
申请中断;
static int gpio_demo_init_interrupt(struct gpio_demo_device *di) {
...
// 获取gpio上的中断号
irq = gpio_to_irq(gpio_index);
...
//申请中断
ret = devm_request_irq(di->dev, irq, gpio_demo_isr,
IRQF_TRIGGER_FALLING, //下降沿
"gpio-demo-isr", //中断名称
di);
...
}
其中,每次外部发送一个下降沿信号,就会触发中断并进入gpio_demo_isr
这个中断服务程序;下面来看一下这个gpio_demo_isr
,在这里可以做一些我们想做的事情;
static irqreturn_t gpio_demo_isr(int irq, void *dev_id)
{
struct gpio_demo_device *di = (struct gpio_demo_device *)dev_id;
struct gpio_platform_data *pdata = di->pdata;
BUG_ON(irq != gpio_to_irq(pdata->gpio_index));
//TODO
dev_info(di->dev, "%s
", __func__);
return IRQ_HANDLED;
}
最终,我只在中断服务程序中打印了一下串口信息,方便验证。
总结
通过这次学习和总结,总体了解了以下几点;
- 通过
delayed_work
对GPIO
进行轮询操作,后面会再深入学习一下; - 学习了对于
GPIO
上的中断申请,目前对于中断还是刚好够用的阶段,中断的篇幅较长,可以对其原理做一下学习,还有内核中中断的机制; - 学习了内核中读取设备树的几个接口;
- 学习了platform设备驱动模型的框架;
附录
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
//API for libgpio
#include <linux/gpio.h>
//API for malloc
#include <linux/slab.h>
//API for device tree
#include <linux/of_platform.h>
#include <linux/of_gpio.h>
#include <linux/of_device.h>
//API for thread
#include <linux/kthread.h>
#include <linux/delay.h>
#include <linux/mutex.h>
//API for delaywork
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#define TIMER_MS_COUNTS 1000
// default value of dts
#define DEFAULT_POLL_TIME 5
#define DEFAULT_MODE 1
struct gpio_platform_data {
int mode;
int count;
int gpio_index;
struct mutex mtx;
int poll_ms;
};
struct gpio_demo_device {
struct platform_device *pdev;
struct device *dev;
struct gpio_platform_data *pdata;
struct workqueue_struct *gpio_monitor_wq;
struct delayed_work gpio_delay_work ;
int gpio_irq;
};
static int gpio_parse_data(struct gpio_demo_device *di){
int ret;
struct gpio_platform_data *pdata;
struct device *dev = di->dev;
struct device_node *np = di->dev->of_node;
pdata = devm_kzalloc(di->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
return -ENOMEM;
}
di->pdata = pdata;
// set default value for platform data
pdata->mode = DEFAULT_MODE;
pdata->poll_ms = DEFAULT_POLL_TIME * 1000;
dev_info(dev,"parse platform data
");
ret = of_property_read_u32(np, "mode", &pdata->mode);
if (ret < 0) {
dev_err(dev, "can't get mode property
");
}
ret = of_property_read_u32(np, "poll_time", &pdata->poll_ms);
if (ret < 0) {
dev_err(dev, "can't get poll_ms property
");
}
pdata->gpio_index = of_get_named_gpio(np,"input-gpio", 0);
if (pdata->gpio_index < 0) {
dev_err(dev, "can't get input gpio
");
}
// debug parse device tree data
dev_info(dev, "Success:mode is %d
", pdata->mode);
dev_info(dev, "Success:gpio index is %d
", pdata->gpio_index);
return 0;
}
static void gpio_demo_work(struct work_struct *work) {
struct gpio_demo_device *di = container_of(work,
struct gpio_demo_device,
gpio_delay_work.work);
struct gpio_platform_data *padta = di->pdata;
int gpio_index,value;
gpio_index = padta->gpio_index;
if (!gpio_is_valid(gpio_index) ) {
dev_err(di->dev, "gpio is not valid
");
goto end;
}
if ( (value = gpio_get_value(gpio_index) ) == 0) {
dev_info(di->dev,"get value is %d
",value);
}else{
dev_info(di->dev,"get value is %d
",value);
}
end:
queue_delayed_work(di->gpio_monitor_wq, &di->gpio_delay_work,
msecs_to_jiffies(di->pdata->poll_ms));
}
static int gpio_demo_init_poll(struct gpio_demo_device *di) {
dev_info(di->dev,"%s
", __func__);
di->gpio_monitor_wq = alloc_ordered_workqueue("%s",
WQ_MEM_RECLAIM | WQ_FREEZABLE, "gpio-demo-wq");
INIT_DELAYED_WORK(&di->gpio_delay_work, gpio_demo_work);
queue_delayed_work(di->gpio_monitor_wq, &di->gpio_delay_work,
msecs_to_jiffies(TIMER_MS_COUNTS * 5));
return 0;
}
static irqreturn_t gpio_demo_isr(int irq, void *dev_id)
{
struct gpio_demo_device *di = (struct gpio_demo_device *)dev_id;
struct gpio_platform_data *pdata = di->pdata;
BUG_ON(irq != gpio_to_irq(pdata->gpio_index));
dev_info(di->dev, "%s
", __func__);
//printk("%s
",__func__);
return IRQ_HANDLED;
}
static int gpio_demo_init_interrupt(struct gpio_demo_device *di) {
int irq, ret;
int gpio_index = di->pdata->gpio_index;
dev_info(di->dev,"%s
", __func__);
if (!gpio_is_valid(gpio_index)){
return -1;
}
irq = gpio_to_irq(gpio_index);
if (irq < 0) {
dev_err(di->dev, "Unable to get irq number for GPIO %d, error %d
",
gpio_index, irq);
gpio_free(gpio_index);
return -1;
}
ret = devm_request_irq(di->dev, irq, gpio_demo_isr,
IRQF_TRIGGER_FALLING,
"gpio-demo-isr",
di);
if (ret) {
dev_err(di->dev, "Unable to claim irq %d; error %d
",
irq, ret);
gpio_free(gpio_index);
return -1;
}
return 0;
}
static int gpio_demo_probe(struct platform_device *pdev){
int ret;
struct gpio_demo_device *priv;
struct device *dev = &pdev->dev;
priv = devm_kzalloc(dev, sizeof(*priv) , GFP_KERNEL);
if (!priv) {
return -ENOMEM;
}
priv->dev = dev; //important
ret = gpio_parse_data(priv);
if (ret){
dev_err(dev,"parse data failed
");
}
platform_set_drvdata(pdev,priv);
if (priv->pdata->mode == 0){
gpio_demo_init_poll(priv);
} else {
gpio_demo_init_interrupt(priv);
}
return 0;
}
#ifdef CONFIG_OF
static struct of_device_id gpio_demo_of_match[] = {
{ .compatible = "gpio-demo"},
{},
}
MODULE_DEVICE_TABLE(of,gpio_demo_of_match);
#else
static struct of_device_id gpio_demo_of_match[] = {
{ },
}
#endif
static struct platform_driver gpio_demo_driver = {
.probe = gpio_demo_probe,
.driver = {
.name = "gpio-demo-device",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(gpio_demo_of_match),
}
};
static int __init gpio_demo_init(void){
return platform_driver_register(&gpio_demo_driver);
}
static void __exit gpio_demo_exit(void){
platform_driver_unregister(&gpio_demo_driver);
}
late_initcall(gpio_demo_init);
module_exit(gpio_demo_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Gpio demo Driver");
MODULE_ALIAS("platform:gpio-demo");