大意: 动态添边, 询问是否是二分图.
算是个线段树按时间分治入门题, 并查集维护每个点到根的奇偶性即可.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <cmath> #include <set> #include <map> #include <queue> #include <string> #include <cstring> #include <bitset> #include <functional> #include <random> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<',';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e6+50; int n, q, fa[N], sz[N], dis[N]; map<pii,vector<int> > g; vector<pii> tr[N<<2]; void add(int o, int l, int r, int ql, int qr, pii v) { if (ql<=l&&r<=qr) return tr[o].pb(v); if (mid>=ql) add(ls,ql,qr,v); if (mid<qr) add(rs,ql,qr,v); } int Find(int x) {while (fa[x]!=x) x=fa[x];return x;} vector<pair<int*,int> > tag[30]; void build(int o, int l, int r, int d) { tag[d].clear(); for (auto &t:tr[o]) { int z = 1, x = t.x, y = t.y; while (fa[x]!=x) z^=dis[x],x=fa[x]; while (fa[y]!=y) z^=dis[y],y=fa[y]; if (x==y) { if (z&1) { REP(i,l,r) puts("NO"); for (auto &t:tag[d]) *t.x=t.y; return; } } if (sz[x]<sz[y]) swap(x,y); tag[d].pb({&sz[x],sz[x]}); tag[d].pb({&fa[y],fa[y]}); tag[d].pb({&dis[y],dis[y]}); sz[x] += sz[y]; fa[y] = x, dis[y] = z; } if (l==r) puts("YES"); else build(ls,d+1),build(rs,d+1); for (auto &t:tag[d]) *t.x = t.y; } int main() { scanf("%d%d", &n, &q); REP(i,1,q) { int u ,v; scanf("%d%d", &u, &v); g[pii(u,v)].pb(i); } for (auto &t:g) { for (int i=0; i<t.y.size(); ++i) { if (i+1==t.y.size()) add(1,1,q,t.y[i],q,t.x); else { add(1,1,q,t.y[i],t.y[i+1]-1,t.x); ++i; } } } REP(i,1,n) fa[i] = i, sz[i] = 1; build(1,1,q,0); }