• Codeforces Round #415 (Div. 1) (CDE)


    1. CF 809C Find a car

    大意: 给定一个$1e9 imes 1e9$的矩阵$a$, $a_{i,j}$为它正上方和正左方未出现过的最小数, 每个询问求一个矩形内的和. 

    可以发现$a_{i,j}=(i-1)oplus (j-1)+1$, 暴力数位$dp$即可

    #include <iostream>
    #include <sstream>
    #include <algorithm>
    #include <cstdio>
    #include <cmath>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <cstring>
    #include <bitset>
    #include <functional>
    #include <random>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<',';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    
    //求 0<=i<=x, 0<=j<=y, 0<=i^j<=k的所有i^j的和
    int f[33][2][2][2], g[33][2][2][2];
    void add(int &a, ll b) {a=(a+b)%P;}
    //f为个数, g为和
    int calc(int x, int y, int k) {
        if (x<0||y<0) return 0;
        memset(f,0,sizeof f);
        memset(g,0,sizeof g);
        f[32][1][1][1] = 1;
        PER(i,0,31)REP(a1,0,1)REP(a2,0,1)REP(a3,0,1) { 
            int &r = f[i+1][a1][a2][a3];
            if (!r) continue;
            int l1=a1&&!(x>>i&1),l2=a2&&!(y>>i&1),l3=a3&&!(k>>i&1);
            REP(b1,0,1)REP(b2,0,1) {
                if (l1&&b1) continue;
                if (l2&&b2) continue;
                if (l3&&(b1^b2)) continue;
                int c1=a1&&b1>=(x>>i&1),c2=a2&&b2>=(y>>i&1),c3=a3&&(b1^b2)>=(k>>i&1);
                add(f[i][c1][c2][c3],r);
                add(g[i][c1][c2][c3],g[i+1][a1][a2][a3]*2ll+(b1^b2)*r);
            }
        }
        int ans = 0;
        REP(a1,0,1)REP(a2,0,1)REP(a3,0,1) add(ans,g[0][a1][a2][a3]+f[0][a1][a2][a3]);
        return ans;
    }
    
    int main() {
        int t;
        scanf("%d", &t);
        while (t--) {
            int x1,y1,x2,y2,k;
            scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&k);
            --x1,--y1,--x2,--y2,--x1,--y1,--k;
            int ans = (calc(x2,y2,k)-calc(x1,y2,k)-calc(x2,y1,k)+calc(x1,y1,k))%P;
            if (ans<0) ans += P;
            printf("%d
    ", ans);
        }
    }
    View Code

    2. CF 809D

    3. CF 809E Surprise me!

    大意: 给定树, 点$i$权值$a_i$, $a$为$n$排列, $dis(x,y)$为$x,y$路径上的边数, 求$frac{1}{n(n-1)}sumlimits_{x ot = y} varphi(a_xa_y)dis(x,y)$

    设$b=a^{-1}$, 转化为求$sumlimits_{i=1}^nsumlimits_{j=1}^n varphi(ij)dis(b_i,b_j)$

    根据$varphi(ij)=frac{varphi(i)varphi(j)gcd(i,j)}{varphi(gcd(i,j))}$

    反演一下可以化为$sumlimits_{T=1}^nBigg(sumlimits_{dmid T}frac{d}{varphi(d)}mu(frac{T}{d})Bigg)sumlimits_{i=1}^{lfloorfrac{n}{T} floor}sumlimits_{j=1}^{lfloorfrac{n}{T} floor}varphi(iT)varphi(jT)dis(b_{iT},b_{jT})$

    考虑枚举$T$, 左边的$sumlimits_{dmid T}frac{d}{varphi(d)}mu(frac{T}{d})$可以线性筛预处理出来.

    右边的就是$sumlimits_{i=1}^{lfloorfrac{n}{T} floor}sumlimits_{j=1}^{lfloorfrac{n}{T} floor}varphi(iT)varphi(jT)({dep}_{b_{iT}}+{dep}_{b_{jT}}-2{dep}_{lca(b_{iT},b_{jT})}) $

    预处理一下$sumlimits_{i=1}^{lfloorfrac{n}{T} floor}varphi(iT)$, 那么$sumlimits_{i=1}^{lfloorfrac{n}{T} floor}sumlimits_{j=1}^{lfloorfrac{n}{T} floor}varphi(iT)varphi(jT)({dep}_{b_{iT}}+{dep}_{b_{jT}})$就很容易求出.

    现在只需要考虑求$sumlimits_{i=1}^{lfloorfrac{n}{T} floor}sumlimits_{j=1}^{lfloorfrac{n}{T} floor}varphi(iT)varphi(jT){dep}_{lca(b_{iT},b_{jT})}$

    有效的点数是$O(frac{n}{T})$的, 提出来建一棵虚树然后$DP$即可

    那么总的复杂度就为$O(nlogn)$

    #include <iostream>
    #include <sstream>
    #include <algorithm>
    #include <cstdio>
    #include <cmath>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <cstring>
    #include <bitset>
    #include <functional>
    #include <random>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<',';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    
    const int N = 1e6+50;
    int n,dep[N],fa[N],son[N],top[N];
    int phi[N],a[N],b[N],sz[N];
    int p[N], cnt, vis[N];
    int h[N],L[N],R[N],f[N],s[N],sum[N];
    vector<int> g[N],gg[N];
    void init() {
        phi[1] = h[1] = 1;
        for (int i=2; i<N; ++i) {
            if (!vis[i]) p[++cnt]=i,phi[i]=i-1,h[i]=inv(i-1);
            for (int j=1,t; j<=cnt&&i*p[j]<N; ++j) {
                vis[t=i*p[j]]=1;
                if (i%p[j]==0) {phi[t]=phi[i]*p[j],h[t]=0;break;}
                phi[t]=phi[i]*phi[p[j]];
                h[t]=(ll)h[i]*h[p[j]]%P;
            }
        }
    }
    void dfs(int x, int f, int d) {
        L[x]=++*L,dep[x]=d,sz[x]=1,fa[x]=f;
        for (int y:g[x]) if (y!=f) {
            dfs(y,x,d+1),sz[x]+=sz[y];
            if (sz[y]>sz[son[x]]) son[x]=y;
        }
        R[x]=*L;
    }
    void dfs(int x, int tf) {
        top[x]=tf;
        if (son[x]) dfs(son[x],tf);
        for (int y:g[x]) if (!top[y]) dfs(y,y);
    }
    int lca(int x, int y) {
        while (top[x]!=top[y]) {
            if (dep[top[x]]<dep[top[y]]) swap(x,y);
            x = fa[top[x]];
        }
        return dep[x]<dep[y]?x:y;
    }
    bool cmp(int x, int y) {
        return L[x]<L[y];
    }
    
    int DP(int x) {
        int ans = (ll)f[x]*f[x]%P*dep[x]%P;
        sum[x] = f[x];
        for (int y:gg[x]) {
            ans = (ans+DP(y))%P;
            ans = (ans+2ll*sum[y]*sum[x]%P*dep[x])%P;
            sum[x] = (sum[x]+sum[y])%P;
        }
        return ans;
    }
    
    int solve(vector<int> &a) {
        sort(a.begin(),a.end(),cmp);
        int sz = a.size();
        REP(i,1,sz-1) a.pb(lca(a[i],a[i-1]));
        a.pb(1);
        sort(a.begin(),a.end(),cmp);
        a.erase(unique(a.begin(),a.end()),a.end());
        s[cnt=1]=a[0],sz=a.size();
        REP(i,1,sz-1) {
            while (cnt>=1) {
                if (L[s[cnt]]<=L[a[i]]&L[a[i]]<=R[s[cnt]]) {
                    gg[s[cnt]].pb(a[i]);
                    break;
                }
                --cnt;
            }
            s[++cnt]=a[i];
        }
        int t = DP(1);
        for (auto &x:a) gg[x].clear(),f[x]=sum[x]=0;
        return t;
    }
    
    int main() {
        init();    
        scanf("%d",&n);
        REP(i,1,n) scanf("%d",a+i),b[a[i]]=i;
        REP(i,2,n) {
            int u, v;
            scanf("%d%d",&u,&v);
            g[u].pb(v),g[v].pb(u);
        }
        dfs(1,0,0),dfs(1,1);
        int ans = 0;
        REP(T,1,n) {
            int ret = 0, sum = 0;
            REP(i,1,n/T) sum = (sum+phi[i*T])%P;
            vector<int> v;
            REP(i,1,n/T) { 
                ret=(ret+2ll*sum*phi[i*T]%P*dep[b[i*T]])%P;
                v.pb(i*T);
            }
            for (auto &t:v) f[b[t]] = phi[t], t = b[t];
            ret = (ret-2ll*solve(v))%P;
            ans = (ans+(ll)h[T]*ret)%P;
        }
        ans = (ll)ans*inv(n)%P*inv(n-1)%P;
        if (ans<0) ans += P;
        printf("%d
    ",ans);
    }
    View Code
  • 相关阅读:
    利用.NET绘图技术制作水晶按钮控件(转)
    推荐几款皮肤界面工具
    同时避免GridView ArgumentNullException 值不能为空和使用Updatepanel乱码
    ASP.NET自动检测用户名是否注册(利用微软AJAX控件技术)
    ASP.NET的GridView在UpdatePanel里导出Excel的语句
    几款ASP.NET在线文本编辑器
    ASP.NET远程连接数据库SQL server
    ASP.NET一个页面多个Button按钮事件避免数据验证控件RequiredFieldValidator冲突方法
    使用面向oo对象方法的12个优点(转)
    C#中的DBNull、Null、""和String.Empty解释
  • 原文地址:https://www.cnblogs.com/uid001/p/11607126.html
Copyright © 2020-2023  润新知