大意: $n$个空间站, 标号$1,...,n$, 地球在$0$, 月球在$-1$, $m$个飞船, 第$i$艘船每次只能载$h_i$人, 周期性停靠在集合$S_i$, 船每移动一次耗时为$1$. 初始$k$个人在地球, 求如何坐船能使$k$个人全到月球的时间最短.
记第$i$个空间站$t$时刻的状态为$(i,t)$.
$S$向$(0,0)$连边$k$, $(-1,t)$向$T$连边$INF$, $(i,t)$向$(i,t+1)$连边$INF$.
枚举时间, 每次将飞船的转移添进网络内, 若当前最大流为$k$, 则可以到达.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #include <unordered_map> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e6+10; int n, m, k, S, T, tot; int h[N], r[N], fa[N]; vector<int> g[N]; struct edge { int v,w,next; } e[N]; int head[N], dep[N], vis[N], cur[N], cnt=1; queue<int> Q; void add(int u, int v, int w) { e[++cnt] = {v,w,head[u]}; head[u] = cnt; e[++cnt] = {u,0,head[v]}; head[v] = cnt; } int bfs() { REP(i,1,tot) dep[i]=INF,vis[i]=0,cur[i]=head[i]; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); for (int i=head[u]; i; i=e[i].next) { if (dep[e[i].v]>dep[u]+1&&e[i].w) { dep[e[i].v]=dep[u]+1; Q.push(e[i].v); } } } return dep[T]!=INF; } int dfs(int x, int w) { if (x==T) return w; int used = 0; for (int i=cur[x]; i; i=e[i].next) { cur[x] = i; if (dep[e[i].v]==dep[x]+1&&e[i].w) { int flow = dfs(e[i].v,min(w-used,e[i].w)); if (flow) { used += flow; e[i].w -= flow; e[i^1].w += flow; if (used==w) break; } } } return used; } int dinic() { int ans = 0; while (bfs()) ans+=dfs(S,INF); return ans; } int Find(int x) {return fa[x]?fa[x]=Find(fa[x]):x;} void add(int x, int y) { x = Find(x), y = Find(y); if (x!=y) fa[x] = y; } map<pii,int> s; int id(int x, int y) { if (s.count(pii(x,y))) return s[pii(x,y)]; return s[pii(x,y)]=++tot; } int main() { scanf("%d%d%d", &n, &m, &k); REP(i,1,m) { scanf("%d%d", h+i, r+i); REP(j,1,r[i]) { int x; scanf("%d", &x); g[i].pb(x); add(g[i].front()+2,g[i].back()+2); } if (r[i]==1) g[i].clear(),--i,--m; } if (Find(1)!=Find(2)) return puts("0"),0; int mf = 0; S = ++tot, T = ++tot; add(S,id(0,0),k); for (int t=1; ; ++t) { add(id(0,t-1),id(0,t),INF); REP(i,1,n) { add(id(i,t-1),id(i,t),INF); } REP(i,1,m) { int L = id(g[i][(t%r[i]-1+r[i])%r[i]],t-1), R = id(g[i][t%r[i]],t); add(L,R,h[i]); } add(id(-1,t),T,INF); if ((mf+=dinic())==k) return printf("%d ",t),0; } }