• 「网络流 24 题」太空飞行计划


    大意: $m$个实验, 每个实验只能进行一次, 第$i$实验需要的仪器集合$R_i$, 收益$p_i$. $n$种仪器, 第$i$种仪器花费$c_i$, 每种仪器可以多次使用. 求最大收益.

    数据范围$n,mle 50$

    最大权闭合子图.

    源点$S$向第$i$个实验连边权为$p_i$, 第$i$个实验向集合$R_i$中的仪器连边权$INF$, 仪器$i$向汇点$T$连边权$c_i$. 则$sum p_i$减去$S->T$的最小割就为最大收益.

    对于实验与$S$间的割的含义为不选这个实验, 对于仪器与$T$之间的割的含义为选这个仪器.

    跑完最大流后仍与$S$连通的点即为最优方案.

    #include <iostream>
    #include <sstream>
    #include <algorithm>
    #include <cstdio>
    #include <math.h>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <string.h>
    #include <bitset>
    #include <unordered_map>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    #ifdef ONLINE_JUDGE
    const int N = 1e6+10;
    #else
    const int N = 999;
    #endif
    
    int n, m, S, T;
    struct edge {
        int v,w,next;
    } e[N];
    int head[N], dep[N], vis[N], cur[N], cnt=1;
    queue<int> Q;
    void add(int u, int v, int w) {
        e[++cnt] = {v,w,head[u]};
        head[u] = cnt;
        e[++cnt] = {u,0,head[v]};
        head[v] = cnt;
    }
    int bfs() {
        REP(i,1,T) dep[i]=INF,vis[i]=0,cur[i]=head[i];
        dep[S]=0,Q.push(S);
        while (Q.size()) {
            int u = Q.front(); Q.pop();
            for (int i=head[u]; i; i=e[i].next) {
                if (dep[e[i].v]>dep[u]+1&&e[i].w) {
                    dep[e[i].v]=dep[u]+1;
                    Q.push(e[i].v);
                }
            }
        }
        return dep[T]!=INF;
    }
    int dfs(int x, int w) {
        if (x==T) return w;
        int used = 0;
        for (int i=cur[x]; i; i=e[i].next) {
            cur[x] = i;
            if (dep[e[i].v]==dep[x]+1&&e[i].w) {
                int flow = dfs(e[i].v,min(w-used,e[i].w));
                if (flow) {
                    used += flow;
                    e[i].w -= flow;
                    e[i^1].w += flow;
                    if (used==w) break;
                }
            }
        }
        return used;
    }
    
    int dinic() {
    	int ans = 0;
    	while (bfs()) ans+=dfs(S,INF);
    	return ans;
    }
    
    int main() {
    	cin>>m>>n;
    	cin.ignore();
    	S = n+m+1, T = S+1;
    	int sum = 0;
    	REP(i,1,m) {
    		string s;
    		getline(cin,s);
    		stringstream ss(s);
    		int k, p;
    		ss>>p;
    		add(S,i,p);
    		sum += p;
    		while (ss>>k) add(i,k+m,INF);
    	}
    	REP(i,1,n) {
    		int r;
    		cin>>r;
    		add(i+m,T,r);
    	}
    	int x = dinic();
    	REP(i,1,m) if (dep[i]!=INF) printf("%d ",i);hr;
    	REP(i,m+1,n+m) if (dep[i]!=INF) printf("%d ",i-m);hr;
    	printf("%d
    ", sum-x);
    }
    
  • 相关阅读:
    查询用户表及表结构
    动态页面静态化(转)
    轻松实现 Killer 级应用 Snap (转)
    继续认识OpenID——Benefits of OpenID (转自http://openid.net/getanopenid/individuals/)
    7 Difference Between RIA and Traditional Web Application(转载)
    解决了MovieClip缩略图问题
    Understanding Flex Print Job from A to Z (彻底了解FlexPrintJob)(精彩转载)
    Using Flex Buildin Print Function(Flex 打印功能系列转载)
    StackOverflow is an OpenIDenabled site??Why OpenID?What is OpenID?
    MovieClip实现拖拽等移动位置的功能
  • 原文地址:https://www.cnblogs.com/uid001/p/10987098.html
Copyright © 2020-2023  润新知