• GukiZ and Binary Operations CodeForces


     大意: 给定$n,k,l,m$, 求有多少个长度为$n$, 元素全部严格小于$2^l$, 且满足

    的序列.

    刚开始想着暴力枚举当前or和上一个数二进制中$1$的分布, 但这样状态数是$O(64^3)$在加上矩阵幂的复杂度显然不行.

    看了题解发现可以按每位单独来考虑.

    #include <iostream>
    #include <sstream>
    #include <algorithm>
    #include <cstdio>
    #include <math.h>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <string.h>
    #include <bitset>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    
    
    ll n, k, l, m;
    
    struct Mat {
    	int v[4][4];
    	Mat() {memset(v, 0, sizeof v);}
    	Mat operator * (const Mat& b) const {
    		Mat c;
    		REP(k,0,3) REP(i,0,3) REP(j,0,3) { 
    			c.v[i][j] = ((ll)v[i][k]*b.v[k][j]+c.v[i][j])%m;
    		}
    		return c;
    	}
    	Mat operator ^ (ll nn) {
    		Mat b, a=*this;
    		REP(i,0,3) b.v[i][i]=1;
    		while(nn) {
    			if(nn&1LL) b=b*a;
    			nn>>=1LL,a=a*a;
    		}
    		return b;
    	}
    };
    
    int main() {
    	cin>>n>>k>>l>>m;
    	if (m==1||l<64&&(k>>l)) return puts("0"),0;
    	Mat g;
    	g.v[0][0]=g.v[0][2]=g.v[1][1]=g.v[1][3]=g.v[2][0]=g.v[3][1]=g.v[3][2]=g.v[3][3]=1;
    	g = g^n;
    	int x = (g.v[0][0]+g.v[2][0])%m, y = (g.v[1][0]+g.v[3][0])%m;
    	ll ans = 1;
    	REP(i,0,l-1) {
    		if (k>>i&1) ans = ans*y%m;
    		else ans = ans*x%m;
    	}
    	printf("%lld
    ", ans);
    }
    
  • 相关阅读:
    修改sql表操作大全
    Asp.NET自定义DataGrid控件
    jQuery LigerUI 插件介绍及使用之ligerGrid
    jQuery LigerUI API预览版发布
    jQuery LigerUI 初次发布&一睹为快(提供Demo下载)
    jQuery LigerUI 插件介绍及使用之ligerDrag和ligerResizable
    nginx 日志
    nginx 正向代理
    排序
    nginx 静态资源优化
  • 原文地址:https://www.cnblogs.com/uid001/p/10948893.html
Copyright © 2020-2023  润新知