大意: 给定$n,k,l,m$, 求有多少个长度为$n$, 元素全部严格小于$2^l$, 且满足
的序列.
刚开始想着暴力枚举当前or和上一个数二进制中$1$的分布, 但这样状态数是$O(64^3)$在加上矩阵幂的复杂度显然不行.
看了题解发现可以按每位单独来考虑.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head ll n, k, l, m; struct Mat { int v[4][4]; Mat() {memset(v, 0, sizeof v);} Mat operator * (const Mat& b) const { Mat c; REP(k,0,3) REP(i,0,3) REP(j,0,3) { c.v[i][j] = ((ll)v[i][k]*b.v[k][j]+c.v[i][j])%m; } return c; } Mat operator ^ (ll nn) { Mat b, a=*this; REP(i,0,3) b.v[i][i]=1; while(nn) { if(nn&1LL) b=b*a; nn>>=1LL,a=a*a; } return b; } }; int main() { cin>>n>>k>>l>>m; if (m==1||l<64&&(k>>l)) return puts("0"),0; Mat g; g.v[0][0]=g.v[0][2]=g.v[1][1]=g.v[1][3]=g.v[2][0]=g.v[3][1]=g.v[3][2]=g.v[3][3]=1; g = g^n; int x = (g.v[0][0]+g.v[2][0])%m, y = (g.v[1][0]+g.v[3][0])%m; ll ans = 1; REP(i,0,l-1) { if (k>>i&1) ans = ans*y%m; else ans = ans*x%m; } printf("%lld ", ans); }