• Shovel Sale CodeForces


    大意: n把铲子, 价格1,2,3,...n, 求有多少个二元组(x,y), 满足x+y末尾数字9的个数最多.

    枚举最高位, 转化为从[1,n]中选出多少个二元组和为$x$, 枚举较小的数

    若$nge lfloorfrac{x}{2} floor$答案为$lfloorfrac{x}{2} floor$, 否则为$n-lfloorfrac{x}{2} floor$

    #include <iostream>
    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <math.h>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <string.h>
    #include <bitset>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    const int N = 100;
    ll n, tot, f[N], num[N];
    int id(int x) {
    	return num[upper_bound(f+1,f+1+9,x)-f-1];
    }
    
    int main() {
    	f[1] = 5;
    	REP(i,2,9) f[i]=f[i-1]*10;
    	num[1] = 9;
    	REP(i,2,9) num[i]=num[i-1]*10+9;
    	cin>>n, tot = id(n);
    	if (tot==0) return cout<<n*(n-1)/2<<endl,0;
    	ll ans = 0;
    	REP(i,0,9) {
    		ll num = (ll)i*(tot+1)+tot;
    		if (n<=num/2) break;
    		else if (n>=num) ans+=num/2;
    		else ans+=n-num/2;
    	}
    	printf("%lld
    ",ans);
    }
    
  • 相关阅读:
    用LazyLoad实现Javascript脚本与Css样式文件延迟加载
    SQL Server2008中删除重复记录
    数据访问层的单元测试
    Asp.net使用HttpModule压缩并删除空白Html请求
    Lazy<T>的应用之类内部字段与C#延迟加载
    Asp.net MVC3 RTM的源代调试
    Asp.net MVC 3 防止 CrossSite Request Forgery (CSRF)原理及扩展
    初识JVM
    JVM虚拟机栈简介
    Tomcat处理HTTP请求源码分析(上)
  • 原文地址:https://www.cnblogs.com/uid001/p/10764384.html
Copyright © 2020-2023  润新知