• Vladik and cards CodeForces


    大意: 给定序列, 求选出一个最长的子序列, 使得任选两个[1,8]的数字, 在子序列中的出现次数差不超过1, 且子序列中相同数字连续.

     

    正解是状压dp, 先二分转为判断[1,8]出现次数>=x是否成立, 再dp求出前i位匹配状态S长度为x+1的数字个数的最大值, 特判一下最低次数为0的情况. 这题打了好久, 太菜了.......

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <math.h>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <string.h>
    #include <bitset>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    typedef bitset<10> btc;
    const int P = 1e9+7, INF = 0xbcbcbcbc;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    //head
    
    
    
    const int N = 1e3+10, S = (1<<8)-1;
    int n, ans;
    int a[N], dp[N][S+1], dig[S+1], f[N][N][9], g[S+1];
    void chkmax(int &x, int y) {x=max(x,y);}
    void chkmin(int &x, int y) {x=min(x,y);}
    int chk(int x) {
    	memset(dp, 0xbc, sizeof dp);
    	dp[0][0] = 0;
    	REP(i,1,n) REP(j,0,S-1) if (dp[i-1][j]!=INF) {
    		for (int k=~j&S, t; k; k^=t) {
    			t = k&-k;
    			int p1 = f[i][x][dig[t]], p2 = f[i][x+1][dig[t]];
    			if (p1<=n) chkmax(dp[p1][j^t], dp[i-1][j]);
    			if (p2<=n) chkmax(dp[p2][j^t], dp[i-1][j]+1);
    		}
    	}
    	int r = INF;
    	REP(i,1,n) chkmax(r,dp[i][S]);
    	ans = max(ans, r+8*x);
    	return r!=INF;
    }
    
    
    int main() {
    	REP(i,0,7) dig[1<<i]=i+1;
    	scanf("%d", &n);
    	REP(i,1,n) scanf("%d", a+i);
    	memset(f,0x3f,sizeof f);
    	PER(i,1,n) REP(j,1,n) REP(k,1,8) {
    		if (a[i]==k) f[i][1][k]=i,f[i][j][k]=f[i+1][j-1][k];
    		else chkmin(f[i][j][k],f[i+1][j][k]);
    	}
    	g[0] = 1;
    	REP(i,1,n) REP(j,0,S) if (!(j>>a[i]-1&1)) {
    		g[j^1<<a[i]-1] |= g[j];
    	}
    	REP(i,0,S) if (g[i]) ans=max(ans,__builtin_popcount(i));
    	int l=1, r=n/8;
    	while (l<=r) {
    		if (chk(mid)) l=mid+1;
    		else r=mid-1;
    	}
    	printf("%d
    ", ans);
    }
    
  • 相关阅读:
    使用DataReader
    使用Dataset
    Command
    Ado.net对象
    集合数据源
    Label 表达式绑定
    输出二进制图像
    Application 可以存储全局变量
    字符串处理
    ?:叫条件运算符
  • 原文地址:https://www.cnblogs.com/uid001/p/10623431.html
Copyright © 2020-2023  润新知