大意: 求构造一棵树, 每个节点回答它的祖先个数, 求最少打错次数.
挺简单的一个构造, 祖先个数等价于节点深度, 所以只需要确定一个最大深度然后贪心即可.
需要特判一下根的深度, 再特判一下只有一个结点的情况
#include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n, s, f; int d[N], sum[N], r[N]; int main() { scanf("%d%d", &n, &s); REP(i,1,n) { int t; scanf("%d", &t); if (i==s&&t) f=1; if (i!=s&&!t) ++d[n]; if (i!=s) ++d[t]; } PER(i,1,n) sum[i]=sum[i+1]+d[i]; REP(i,1,n) r[i]=r[i-1]+!d[i]; int ans = n-1; REP(i,1,n-1) ans = min(ans, max(sum[i+1],r[i])); printf("%d ", ans+f); }