• P2221 [HAOI2012]高速公路


    [洛谷P2221] [HAOI2012]高速公路

    题目大意:

    给定序列(a1..an),维护两个操作,区间加,区间询问对l..r区间内的点对,求期望距离。


    因为题目是边的贡献,考虑把l+1转化为点的贡献。
    考虑对于([l..r])的答案如何计算

    [ans=frac{sum_{l<r}dis[l][r]}{(r-l+1) imes(r-l)/2} ]

    先不看下面的,只算上面的ans,最后除一下就行
    考虑权值(a_i)在所有点对中被贡献的次数

    [ans=sum_{i=l}^r a_i×(r-i+1)×(i-l+1) ]

    怎么理解这个式子呢?考虑只有跨过(a_i)的点对会包含(a_i),那在(a_i)左边的(l)就有((i-l+1))个,在(a_i)右边的(r)((r-i+1))个 (注:(l,r)可以取到(a_i) 因为转换成了点的贡献)
    发现还是不太好维护,考虑先展开

    [ans=sum_{i=l}^r a_i×(ir-i^2-lr-l+r+1) ]

    整理一下 把含i^2项的,i项的,和常数项分开

    [ans=sum_{i=l}^r a_i×[-i^2+(l+r)i+(r-l+1-lr)] ]

    考虑写成(3)个求和分别维护

    [ans=-sum_{i=l}^r a_i×i^2+(l+r)sum_{i=l}^r a_i imes i+(r-l+1-lr)sum_{i=l}^r a_i ]

    分别记(sum_{i=l}^r a_i)为$s1, $ (sum_{i=l}^r a_i×i^2)(s2), (sum_{i=l}^r a_i imes i)(s3),
    答案就可以写成

    [ans=-s3+(l+r)s2+(r-l+1-lr)s1 ]

    答案想好了 考虑区间l..r加w的时候s1,s2,s3的变化

    [s1+=(r-l+1) imes w ]

    [s2+=sum_{i=l}^r i imes w ]

    [s2+=sum_{i=l}^r i^2 imes w ]

    对于(sum_{i=l}^r i)可以预处理出来,记为(s4)
    同理(sum_{i=l}^r i^2) 预处理出来记为(s5)
    而且很好的,(s4,s5)具有可加性,在线段树上维护的时候直接(s4[rt]=s4[lc]+s4[rc]),不需要做其他事情

    大概分析完了,有一些细节注意的地方:

    1、记得(l..r)换成(l+1..r)或者(l..r-1),而且这里的变化会影响到(ans)那里的计算(简而言之就是算分子的时候把(l)换成(l+1)就行)
    2、别忘了除掉(gcd)
    3、由于乘法很多,所有参与计算的变量要开(longlong),而且写的时候记得加上(1ll*)


    #include<bits/stdc++.h>
    #define lc root<<1
    #define rc root<<1|1
    #define lson root<<1,l,mid
    #define rson root<<1|1,mid+1,r
    using namespace std;
    const int maxn=100010;
    typedef long long ll;
    ll s1[maxn<<2],s2[maxn<<2],s3[maxn<<2],s4[maxn<<2],s5[maxn<<2],lazy[maxn<<2];
    int n,m;
    inline void pushup(int root){
    	s1[root]=s1[lc]+s1[rc];
    	s2[root]=s2[lc]+s2[rc];
    	s3[root]=s3[lc]+s3[rc];
    }
    void build(int root,int l,int r){
    	lazy[root]=s1[root]=s2[root]=s3[root]=0;
    	if (l==r){
    		s4[root]=l;
    		s5[root]=1ll*l*l;
    		return;
    	}
    	int mid=l+r>>1;
    	build(lson);build(rson);
    	s4[root]=s4[lc]+s4[rc];
    	s5[root]=s5[lc]+s5[rc];
    }
    void pushdown(int root,int l,int r){
    	if (!lazy[root]) return;
    	int t=lazy[root];lazy[root]=0;
    	lazy[lc]+=t;lazy[rc]+=t;
    	int mid=l+r>>1;
    	s1[lc]+=1ll*(mid-l+1)*t;s1[rc]+=1ll*(r-mid)*t;
    	s2[lc]+=1ll*s4[lc]*t;s2[rc]+=1ll*s4[rc]*t;
    	s3[lc]+=1ll*s5[lc]*t;s3[rc]+=1ll*s5[rc]*t;
    }
    void update(int root,int l,int r,int L,int R,int w){
    	if (L<=l && r<=R){
    		s1[root]+=1ll*(r-l+1)*w;
    		s2[root]+=1ll*w*s4[root];
    		s3[root]+=1ll*w*s5[root];
    		lazy[root]+=w;
    		return;
    	}
    	pushdown(root,l,r);
    	int mid=l+r>>1;
    	if (L<=mid) update(lson,L,R,w);
    	if (R>mid)  update(rson,L,R,w);
    	pushup(root);
    }
    void query(int root,int l,int r,int L,int R,ll &sum1,ll &sum2,ll &sum3){
    	if (L<=l && r<=R){
    		sum1+=s1[root];sum2+=s2[root];sum3+=s3[root];
    		return;
    	}
    	pushdown(root,l,r);
    	int mid=l+r>>1;
    	if (L<=mid) query(lson,L,R,sum1,sum2,sum3);
    	if (R>mid)  query(rson,L,R,sum1,sum2,sum3);
    }
    ll gcd(ll x,ll y){
    	if (x%y==0) return y;
    	else return gcd(y,x%y);
    }
    inline int read(){
        int x=0,f=1;char ch=getchar();
        while (ch<'0' || ch>'9') {if (ch=='-') f=-1;ch=getchar();}
        while (ch>='0' && ch<='9') {x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
        return x*f;
    }
    int main(){
    	n=read();m=read();
    	build(1,1,n);
    	ll sum1=0,sum2=0,sum3=0;char st[10];
    	int l,r,v;ll ans,mu,g;
    	while (m--){
    		scanf("%s",st);l=read();r=read();
    		if (st[0]=='C'){
    			v=read();
    			update(1,1,n,l+1,r,v);
    		}else{
    			sum1=sum2=sum3=0;
    			query(1,1,n,l+1,r,sum1,sum2,sum3);
    			ans=1ll*(l+1+r)*sum2+1ll*(r-l-1ll*(l+1)*r)*sum1-sum3;
    			mu=1ll*(r-l+1)*(r-l)/2;
    			g=gcd(ans,mu);
    			printf("%lld/%lld
    ",ans/g,mu/g);
    		}
    	}
    	return 0;
    }
  • 相关阅读:
    利用libxml2解析xml文档
    找出两个链表的第一个公共结点
    [转载]风雨20年:我所积累的20条编程经验
    inotify监测文件及文件夹
    [转载]linux下svn常用指令
    利用zlib进行数据压缩
    2013腾讯编程马拉松初赛:郑厂长系列故事——体检
    Socket编程之简单介绍
    C语言中static的作用总结
    写程序实现wireshark的抓包功能
  • 原文地址:https://www.cnblogs.com/ugly-CYW-lyr-ddd/p/11581959.html
Copyright © 2020-2023  润新知