计算几何基础模板
基础类型
const double eps = 1e-8;
const double PI=acos(-1.0);
int sgn(double x) {
if(fabs(x) < eps) return 0;
if(x < 0) return -1;
return 1;
}
struct Point {
double x,y;
Point() {}
Point(double _x,double _y) {
x = _x;y = _y;
}
Point operator -(const Point &b)const {
return Point(x - b.x,y - b.y);
}
Point operator +(const Point &b)const {
return Point(x + b.x,y +b.y);
}
double operator ^(const Point &b)const {
return x*b.y - y*b.x;
}
double operator *(const Point &b)const {
return x*b.x + y*b.y;
}
Point operator *(double b)const {
return Point(x*b,y*b);
}
Point Rotate(double rad){ //逆时针旋转
return Point(x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad));
}
double angle(){
return atan2(y,x);
}
double len(){//Vector
return sqrt(x*x+y*y);
}
void stdd(){//Vector
double le=len();
x/=le;y/=le;
}
void input(){
scanf("%lf%lf",&x,&y);
}
void output(){
printf("(%.8f,%.8f) ",x,y);
}
};
double xmult(Point p0,Point p1,Point p2) { //p0p1 X p0p2
return (p1-p0)^(p2-p0);
}
double dist(Point a,Point b) {//a到b距离
return sqrt( (b - a)*(b - a) );
}
double getArea(Point a,Point b,Point c){//三角形面积S
return fabs(xmult(a,b,c))/2.0;
}
double distLP(Point a,Point b,Point p){//p到ab的距离
return getArea(a,b,p)*2/dist(a,b);
}
double calArea(vector<Point> &p){//按逆时针排列的多边形面积
double ans=0;
int m=p.size();
for(int i=0;i<m;i++){
ans+=p[i]^p[(i+1)%m];
}
return fabs(ans/2.0);
}
struct Line{
Point s,t;
double ang;
Line(Point X=Point(),Point Y=Point()){
s=X,t=Y,ang=(Y-X).angle();
}
double getangle(){
return ang=(t-s).angle();
}
double getDistance(Point A){ //点到直线的距离
return fabs((A-s)^(A-t))/dist(s,t);
}
};
Point getIntersectPoint(Line a, Line b) {//两直线交,注意如果两直线重合会出错,要先判断
double a1 = a.s.y - a.t.y, b1 = a.t.x - a.s.x, c1 = a.s.x * a.t.y - a.t.x * a.s.y;
double a2 = b.s.y - b.t.y, b2 = b.t.x - b.s.x, c2 = b.s.x * b.t.y - b.t.x * b.s.y;
return Point((c1*b2-c2*b1)/(a2*b1-a1*b2), (a2*c1-a1*c2)/(a1*b2-a2*b1));
}
struct Circle {
Point o;
double r;
Circle(){}
void input(){
o.input();
scanf("%lf",&r);
}
void output(){
printf("%.8f %.8f %.8f
",o.x,o.y,r);
}
};
判断两个线段是否相交
bool jiao(Point a,Point b,Point c,Point d){//判断线段ab和cd是否相交
if( max(a.x,b.x)<min(c.x,d.x)||
max(a.y,b.y)<min(c.y,d.y)||
max(c.x,d.x)<min(a.x,b.x)||
max(c.y,d.y)<min(a.y,b.y)||
xmult(a,c,b)*xmult(a,b,d)<0||
xmult(c,a,d)*xmult(c,d,b)<0 )
return 0;
else return 1;
}
atan2
atan2(double y,double x);
返回坐标(x,y)的极角(-pi~pi)
第一象限为((0,pi/2))
第二象限为((pi/2,pi))
第三象限为 ((-pi,-pi/2))
第四象限为((-pi/2,0))
极角排序
选用一个点o为中心进行极角排序时,需要先将其他点坐标转化为相对o的坐标,即原坐标-o的坐标。
用atan2直接排序,存在精度问题
bool cmp1(Point a,Point b){
if(atan2(a.y,a.x)!=atan2(b.y,b.x))
return atan2(a.y,a.x)<atan2(b.y,b.x);
else return a.x<b.x;
}
利用叉积排序,要求点分布在180°圆心角内
bool cmp2(Point a,Point b){
return sgn(a^b)>0;
}
先按照象限排序,再按照叉积排序:
int getq(Point a) {
if(a.x>0 && a.y>=0) return 1;
if(a.x<=0 && a.y>0) return 2;
if(a.x<0 && a.y<=0) return 3;
if(a.x>=0 && a.y<0) return 4;
}
bool cmp(Point a,Point b){
if(getq(a)==getq(b))
return cmp2(a,b);
else return getq(a)<getq(b);
}
凸包
bool cmpA(Point a,Point b){
return a.x<b.x||(a.x==b.x && a.y<b.y);
}
vector<Point> Andrew(vector<Point> p) {//输入不能有重复点,若要凸包边上没有输入点,将两个<=改为<
sort(p.begin(),p.end(),cmpA);
vector<Point>tb;
for(int i=0; i<p.size(); i++) {
while(tb.size()>=2&&sgn(xmult(tb[tb.size()-2],tb[tb.size()-1],p[i]))<=0)tb.pop_back();
tb.push_back(p[i]);
}
int temp=tb.size();
for(int i=p.size()-2; i>=0; i--) {
while(tb.size()>temp&&sgn(xmult(tb[tb.size()-2],tb[tb.size()-1],p[i]))<=0)tb.pop_back();
tb.push_back(p[i]);
}
if(p.size()>1)tb.pop_back();
return tb;
}
半平面交
bool onRight(Line a,Line b,Line c){
Point jiao=getIntersectPoint(b,c);
if(xmult(a.s,a.t,jiao)<0){
return 1;
}
else{
return 0;
}
}
bool cmpHL(Line a,Line b){
double A=a.getangle(),B=b.getangle();
if(sgn(A-B)==0){//平行的直线将最左边的放后面,便于去重
return xmult(a.s,a.t,b.t)>=0;
}
else{
return A<B;
}
}
vector<Line> getHL(vector<Line> l){
//去除角度相同的,保留最最左的
sort(l.begin(),l.end(),cmpHL);
int n=l.size();
int cnt=0;
for(int i=0;i<=n-2;i++){
if(sgn(l[i].getangle()-l[i+1].getangle())==0){
continue;
}
l[cnt++]=l[i];
}
l[cnt++]=l[n-1];
deque<Line> que;
for(int i=0;i<cnt;i++){
while(que.size()>=2&&onRight(l[i],que[que.size()-1],que[que.size()-2])) que.pop_back();
while(que.size()>=2&&onRight(l[i],que[0],que[1])) que.pop_front();
que.push_back(l[i]);
}
while(que.size()>=3&&onRight(que[0],que[que.size()-1],que[que.size()-2])) que.pop_back();
while(que.size()>=3&&onRight(que[que.size()-1],que[0],que[1])) que.pop_front();
vector<Line> hl;
for(int i=0;i<que.size();i++){
hl.push_back(que[i]);
}
return hl;
}
旋转卡壳
//求凸包的直径
int getMax(vector<Point> p){//要求凸包逆时针排列
int n=p.size();
int ans=0;
if(n==2){
return dist(p[1],p[0]);
}
int j=2;
for(int i=0;i<n;i++){
while(getArea(p[i],p[(i+1)%n],p[j])<getArea(p[i],p[(i+1)%n],p[(j+1)%n])){
j=(j+1)%n;
}
ans=max(ans,max(dist(p[i],p[j]),dist(p[(i+1)%n],p[j])));
}
return ans;
}
反演变换
Point PtP(Point a,Point p,double r){//点到点
Point v1=a-p;
v1.stdd();
double len=r*r/dist(a,p);
return p+v1*len;
}
Circle CtC(Circle C,Point p,double r){//圆到圆
Circle res;
double t = dist(C.o,p);
double x = r*r / (t - C.r);
double y = r*r / (t + C.r);
res.r = (x - y) / 2.0;
double s = (x + y) / 2.0;
res.o = p + (C.o - p) * (s / t);
return res;
}
Circle LtC(Point a,Point b,Point p,double r){//直线到过反演点的圆
double d=distLP(a,b,p);
d=r*r/d;
Circle c;
c.r=d/2;
Point v1;
if(xmult(a,b,p)>0)
v1=(a-b).Rotate(PI/2);
else
v1=(b-a).Rotate(PI/2);
v1.stdd();
c.o=p+v1*c.r;
return c;
}
最小圆覆盖
Point circumcenter(Point a,Point b,Point c){
double x1=a.x,y1=a.y,x2=b.x,y2=b.y,x3=c.x,y3=c.y;
double a1=x2-x1,b1=y2-y1,c1=(x2*x2-x1*x1+y2*y2-y1*y1)/2;
double a2=x3-x1,b2=y3-y1,c2=(x3*x3-x1*x1+y3*y3-y1*y1)/2;
return {(b2*c1-b1*c2)/(a1*b2-a2*b1),(a1*c2-a2*c1)/(a1*b2-a2*b1)};
}
void min_cover_circle(vector<Point> p,Point &c,double &r)
{
random_shuffle(p.begin(),p.end()); //将n个点随机打乱
int n=p.size();
c=p[0]; r=0;
for(int i=1;i<n;i++)
{
if(dist(p[i],c)>r+eps) //第一个点
{
c=p[i]; r=0;
for(int j=0;j<i;j++)
if(dist(p[j],c)>r+eps) //第二个点
{
c.x=(p[i].x+p[j].x)/2;
c.y=(p[i].y+p[j].y)/2;
r=dist(p[j],c);
for(int k=0;k<j;k++)
if(dist(p[k],c)>r+eps) //第三个点
{ //求外接圆圆心,三点必不共线
c=circumcenter(p[i],p[j],p[k]);
r=dist(p[i],c);
}
}
}
}
}
未整理
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const double PI = acos(-1.0);
const double eps = 1e-10;
/****************常用函数***************/
//判断ta与tb的大小关系
int sgn( double ta, double tb)
{
if(fabs(ta-tb)<eps)return 0;
if(ta<tb) return -1;
return 1;
}
//点
class Point
{
public:
double x, y;
Point(){}
Point( double tx, double ty){ x = tx, y = ty;}
bool operator < (const Point &_se) const
{
return x<_se.x || (x==_se.x && y<_se.y);
}
friend Point operator + (const Point &_st,const Point &_se)
{
return Point(_st.x + _se.x, _st.y + _se.y);
}
friend Point operator - (const Point &_st,const Point &_se)
{
return Point(_st.x - _se.x, _st.y - _se.y);
}
//点位置相同(double类型)
bool operator == (const Point &_off)const
{
return sgn(x, _off.x) == 0 && sgn(y, _off.y) == 0;
}
};
/****************常用函数***************/
//点乘
double dot(const Point &po,const Point &ps,const Point &pe)
{
return (ps.x - po.x) * (pe.x - po.x) + (ps.y - po.y) * (pe.y - po.y);
}
//叉乘
double xmult(const Point &po,const Point &ps,const Point &pe)
{
return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);
}
//两点间距离的平方
double getdis2(const Point &st,const Point &se)
{
return (st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y);
}
//两点间距离
double getdis(const Point &st,const Point &se)
{
return sqrt((st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y));
}
//两点表示的向量
class Line
{
public:
Point s, e;//两点表示,起点[s],终点[e]
double a, b, c;//一般式,ax+by+c=0
double angle;//向量的角度,[-pi,pi]
Line(){}
Line( Point ts, Point te):s(ts),e(te){}//get_angle();}
Line(double _a,double _b,double _c):a(_a),b(_b),c(_c){}
//排序用
bool operator < (const Line &ta)const
{
return angle<ta.angle;
}
//向量与向量的叉乘
friend double operator / ( const Line &_st, const Line &_se)
{
return (_st.e.x - _st.s.x) * (_se.e.y - _se.s.y) - (_st.e.y - _st.s.y) * (_se.e.x - _se.s.x);
}
//向量间的点乘
friend double operator *( const Line &_st, const Line &_se)
{
return (_st.e.x - _st.s.x) * (_se.e.x - _se.s.x) - (_st.e.y - _st.s.y) * (_se.e.y - _se.s.y);
}
//从两点表示转换为一般表示
//a=y2-y1,b=x1-x2,c=x2*y1-x1*y2
bool pton()
{
a = e.y - s.y;
b = s.x - e.x;
c = e.x * s.y - e.y * s.x;
return true;
}
//半平面交用
//点在向量左边(右边的小于号改成大于号即可,在对应直线上则加上=号)
friend bool operator < (const Point &_Off, const Line &_Ori)
{
return (_Ori.e.y - _Ori.s.y) * (_Off.x - _Ori.s.x)
< (_Off.y - _Ori.s.y) * (_Ori.e.x - _Ori.s.x);
}
//求直线或向量的角度
double get_angle( bool isVector = true)
{
angle = atan2( e.y - s.y, e.x - s.x);
if(!isVector && angle < 0)
angle += PI;
return angle;
}
//点在线段或直线上 1:点在直线上 2点在s,e所在矩形内
bool has(const Point &_Off, bool isSegment = false) const
{
bool ff = sgn( xmult( s, e, _Off), 0) == 0;
if( !isSegment) return ff;
return ff
&& sgn(_Off.x - min(s.x, e.x), 0) >= 0 && sgn(_Off.x - max(s.x, e.x), 0) <= 0
&& sgn(_Off.y - min(s.y, e.y), 0) >= 0 && sgn(_Off.y - max(s.y, e.y), 0) <= 0;
}
//点到直线/线段的距离
double dis(const Point &_Off, bool isSegment = false)
{
///化为一般式
pton();
//到直线垂足的距离
double td = (a * _Off.x + b * _Off.y + c) / sqrt(a * a + b * b);
//如果是线段判断垂足
if(isSegment)
{
double xp = (b * b * _Off.x - a * b * _Off.y - a * c) / ( a * a + b * b);
double yp = (-a * b * _Off.x + a * a * _Off.y - b * c) / (a * a + b * b);
double xb = max(s.x, e.x);
double yb = max(s.y, e.y);
double xs = s.x + e.x - xb;
double ys = s.y + e.y - yb;
if(xp > xb + eps || xp < xs - eps || yp > yb + eps || yp < ys - eps)
td = min( getdis(_Off,s), getdis(_Off,e));
}
return fabs(td);
}
//关于直线对称的点
Point mirror(const Point &_Off)
{
///注意先转为一般式
Point ret;
double d = a * a + b * b;
ret.x = (b * b * _Off.x - a * a * _Off.x - 2 * a * b * _Off.y - 2 * a * c) / d;
ret.y = (a * a * _Off.y - b * b * _Off.y - 2 * a * b * _Off.x - 2 * b * c) / d;
return ret;
}
//计算两点的中垂线
static Line ppline(const Point &_a,const Point &_b)
{
Line ret;
ret.s.x = (_a.x + _b.x) / 2;
ret.s.y = (_a.y + _b.y) / 2;
//一般式
ret.a = _b.x - _a.x;
ret.b = _b.y - _a.y;
ret.c = (_a.y - _b.y) * ret.s.y + (_a.x - _b.x) * ret.s.x;
//两点式
if(fabs(ret.a) > eps)
{
ret.e.y = 0.0;
ret.e.x = - ret.c / ret.a;
if(ret.e == ret. s)
{
ret.e.y = 1e10;
ret.e.x = - (ret.c - ret.b * ret.e.y) / ret.a;
}
}
else
{
ret.e.x = 0.0;
ret.e.y = - ret.c / ret.b;
if(ret.e == ret. s)
{
ret.e.x = 1e10;
ret.e.y = - (ret.c - ret.a * ret.e.x) / ret.b;
}
}
return ret;
}
//------------直线和直线(向量)-------------
//向量向左边平移t的距离
Line& moveLine( double t)
{
Point of;
of = Point( -( e.y - s.y), e.x - s.x);
double dis = sqrt( of.x * of.x + of.y * of.y);
of.x= of.x * t / dis, of.y = of.y * t / dis;
s = s + of, e = e + of;
return *this;
}
//直线重合
static bool equal(const Line &_st,const Line &_se)
{
return _st.has( _se.e) && _se.has( _st.s);
}
//直线平行
static bool parallel(const Line &_st,const Line &_se)
{
return sgn( _st / _se, 0) == 0;
}
//两直线(线段)交点
//返回-1代表平行,0代表重合,1代表相交
static bool crossLPt(const Line &_st,const Line &_se, Point &ret)
{
if(parallel(_st,_se))
{
if(Line::equal(_st,_se)) return 0;
return -1;
}
ret = _st.s;
double t = ( Line(_st.s,_se.s) / _se) / ( _st / _se);
ret.x += (_st.e.x - _st.s.x) * t;
ret.y += (_st.e.y - _st.s.y) * t;
return 1;
}
//------------线段和直线(向量)----------
//直线和线段相交
//参数:直线[_st],线段[_se]
friend bool crossSL( Line &_st, Line &_se)
{
return sgn( xmult( _st.s, _se.s, _st.e) * xmult( _st.s, _st.e, _se.e), 0) >= 0;
}
//判断线段是否相交(注意添加eps)
static bool isCrossSS( const Line &_st, const Line &_se)
{
//1.快速排斥试验判断以两条线段为对角线的两个矩形是否相交
//2.跨立试验(等于0时端点重合)
return
max(_st.s.x, _st.e.x) >= min(_se.s.x, _se.e.x) &&
max(_se.s.x, _se.e.x) >= min(_st.s.x, _st.e.x) &&
max(_st.s.y, _st.e.y) >= min(_se.s.y, _se.e.y) &&
max(_se.s.y, _se.e.y) >= min(_st.s.y, _st.e.y) &&
sgn( xmult( _se.s, _st.s, _se.e) * xmult( _se.s, _se.e, _st.s), 0) >= 0 &&
sgn( xmult( _st.s, _se.s, _st.e) * xmult( _st.s, _st.e, _se.s), 0) >= 0;
}
};
//寻找凸包的graham 扫描法所需的排序函数
Point gsort;
bool gcmp( const Point &ta, const Point &tb)/// 选取与最后一条确定边夹角最小的点,即余弦值最大者
{
double tmp = xmult( gsort, ta, tb);
if( fabs( tmp) < eps)
return getdis( gsort, ta) < getdis( gsort, tb);
else if( tmp > 0)
return 1;
return 0;
}
class Polygon
{
public:
const static int maxpn = 5e4+7;
Point pt[maxpn];//点(顺时针或逆时针)
Line dq[maxpn]; //求半平面交打开注释
int n;//点的个数
//求多边形面积,多边形内点必须顺时针或逆时针
double area()
{
double ans = 0.0;
for(int i = 0; i < n; i ++)
{
int nt = (i + 1) % n;
ans += pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
}
return fabs( ans / 2.0);
}
//求多边形重心,多边形内点必须顺时针或逆时针
Point gravity()
{
Point ans;
ans.x = ans.y = 0.0;
double area = 0.0;
for(int i = 0; i < n; i ++)
{
int nt = (i + 1) % n;
double tp = pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
area += tp;
ans.x += tp * (pt[i].x + pt[nt].x);
ans.y += tp * (pt[i].y + pt[nt].y);
}
ans.x /= 3 * area;
ans.y /= 3 * area;
return ans;
}
//判断点是否在任意多边形内[射线法],O(n)
bool ahas( Point &_Off)
{
int ret = 0;
double infv = 1e20;//坐标系最大范围
Line l = Line( _Off, Point( -infv ,_Off.y));
for(int i = 0; i < n; i ++)
{
Line ln = Line( pt[i], pt[(i + 1) % n]);
if(fabs(ln.s.y - ln.e.y) > eps)
{
Point tp = (ln.s.y > ln.e.y)? ln.s: ln.e;
if( ( fabs( tp.y - _Off.y) < eps && tp.x < _Off.x + eps) || Line::isCrossSS( ln, l))
ret++;
}
else if( Line::isCrossSS( ln, l))
ret++;
}
return ret&1;
}
//判断任意点是否在凸包内,O(logn)
bool bhas( Point & p)
{
if( n < 3)
return false;
if( xmult( pt[0], p, pt[1]) > eps)
return false;
if( xmult( pt[0], p, pt[n-1]) < -eps)
return false;
int l = 2,r = n-1;
int line = -1;
while( l <= r)
{
int mid = ( l + r) >> 1;
if( xmult( pt[0], p, pt[mid]) >= 0)
line = mid,r = mid - 1;
else l = mid + 1;
}
return xmult( pt[line-1], p, pt[line]) <= eps;
}
//凸多边形被直线分割
Polygon split( Line &_Off)
{
//注意确保多边形能被分割
Polygon ret;
Point spt[2];
double tp = 0.0, np;
bool flag = true;
int i, pn = 0, spn = 0;
for(i = 0; i < n; i ++)
{
if(flag)
pt[pn ++] = pt[i];
else
ret.pt[ret.n ++] = pt[i];
np = xmult( _Off.s, _Off.e, pt[(i + 1) % n]);
if(tp * np < -eps)
{
flag = !flag;
Line::crossLPt( _Off, Line(pt[i], pt[(i + 1) % n]), spt[spn++]);
}
tp = (fabs(np) > eps)?np: tp;
}
ret.pt[ret.n ++] = spt[0];
ret.pt[ret.n ++] = spt[1];
n = pn;
return ret;
}
/** 卷包裹法求点集凸包,_p为输入点集,_n为点的数量 **/
void ConvexClosure( Point _p[], int _n)
{
sort( _p, _p + _n);
n = 0;
for(int i = 0; i < _n; i++)
{
while( n > 1 && sgn( xmult( pt[n-2], pt[n-1], _p[i]), 0) <= 0)
n--;
pt[n++] = _p[i];
}
int _key = n;
for(int i = _n - 2; i >= 0; i--)
{
while( n > _key && sgn( xmult( pt[n-2], pt[n-1], _p[i]), 0) <= 0)
n--;
pt[n++] = _p[i];
}
if(n>1) n--;//除去重复的点,该点已是凸包凸包起点
}
/****** 寻找凸包的graham 扫描法********************/
/****** _p为输入的点集,_n为点的数量****************/
void graham( Point _p[], int _n)
{
int cur=0;
for(int i = 1; i < _n; i++)
if( sgn( _p[cur].y, _p[i].y) > 0 || ( sgn( _p[cur].y, _p[i].y) == 0 && sgn( _p[cur].x, _p[i].x) > 0) )
cur = i;
swap( _p[cur], _p[0]);
n = 0, gsort = pt[n++] = _p[0];
if( _n <= 1) return;
sort( _p + 1, _p+_n ,gcmp);
pt[n++] = _p[1];
for(int i = 2; i < _n; i++)
{
while(n>1 && sgn( xmult( pt[n-2], pt[n-1], _p[i]), 0) <= 0)// 当凸包退化成直线时需特别注意n
n--;
pt[n++] = _p[i];
}
}
//凸包旋转卡壳(注意点必须顺时针或逆时针排列)
//返回值凸包直径的平方(最远两点距离的平方)
pair<Point,Point> rotating_calipers()
{
int i = 1 % n;
double ret = 0.0;
pt[n] = pt[0];
pair<Point,Point>ans=make_pair(pt[0],pt[0]);
for(int j = 0; j < n; j ++)
{
while( fabs( xmult( pt[i+1], pt[j], pt[j + 1])) > fabs( xmult( pt[i], pt[j], pt[j + 1])) + eps)
i = (i + 1) % n;
//pt[i]和pt[j],pt[i + 1]和pt[j + 1]可能是对踵点
if(ret < getdis2(pt[i],pt[j])) ret = getdis2(pt[i],pt[j]), ans = make_pair(pt[i],pt[j]);
if(ret < getdis2(pt[i+1],pt[j+1])) ret = getdis(pt[i+1],pt[j+1]), ans = make_pair(pt[i+1],pt[j+1]);
}
return ans;
}
//凸包旋转卡壳(注意点必须逆时针排列)
//返回值两凸包的最短距离
double rotating_calipers( Polygon &_Off)
{
int i = 0;
double ret = 1e10;//inf
pt[n] = pt[0];
_Off.pt[_Off.n] = _Off.pt[0];
//注意凸包必须逆时针排列且pt[0]是左下角点的位置
while( _Off.pt[i + 1].y > _Off.pt[i].y)
i = (i + 1) % _Off.n;
for(int j = 0; j < n; j ++)
{
double tp;
//逆时针时为 >,顺时针则相反
while((tp = xmult(_Off.pt[i + 1],pt[j], pt[j + 1]) - xmult(_Off.pt[i], pt[j], pt[j + 1])) > eps)
i = (i + 1) % _Off.n;
//(pt[i],pt[i+1])和(_Off.pt[j],_Off.pt[j + 1])可能是最近线段
ret = min(ret, Line(pt[j], pt[j + 1]).dis(_Off.pt[i], true));
ret = min(ret, Line(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j + 1], true));
if(tp > -eps)//如果不考虑TLE问题最好不要加这个判断
{
ret = min(ret, Line(pt[j], pt[j + 1]).dis(_Off.pt[i + 1], true));
ret = min(ret, Line(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j], true));
}
}
return ret;
}
//-----------半平面交-------------
//复杂度:O(nlog2(n))
//获取半平面交的多边形(多边形的核)
//参数:向量集合[l],向量数量[ln];(半平面方向在向量左边)
//函数运行后如果n[即返回多边形的点数量]为0则不存在半平面交的多边形(不存在区域或区域面积无穷大)
int judege( Line &_lx, Line &_ly, Line &_lz)
{
Point tmp;
Line::crossLPt(_lx,_ly,tmp);
return sgn(xmult(_lz.s,tmp,_lz.e),0);
}
int halfPanelCross(Line L[], int ln)
{
int i, tn, bot, top;
for(int i = 0; i < ln; i++)
L[i].get_angle();
sort(L, L + ln);
//平面在向量左边的筛选
for(i = tn = 1; i < ln; i ++)
if(fabs(L[i].angle - L[i - 1].angle) > eps)
L[tn ++] = L[i];
ln = tn, n = 0, bot = 0, top = 1;
dq[0] = L[0], dq[1] = L[1];
for(i = 2; i < ln; i ++)
{
while(bot < top && judege(dq[top],dq[top-1],L[i]) > 0)
top --;
while(bot < top && judege(dq[bot],dq[bot+1],L[i]) > 0)
bot ++;
dq[++ top] = L[i];
}
while(bot < top && judege(dq[top],dq[top-1],dq[bot]) > 0)
top --;
while(bot < top && judege(dq[bot],dq[bot+1],dq[top]) > 0)
bot ++;
//若半平面交退化为点或线
// if(top <= bot + 1)
// return 0;
dq[++top] = dq[bot];
for(i = bot; i < top; i ++)
Line::crossLPt(dq[i],dq[i + 1],pt[n++]);
return n;
}
};
class Circle
{
public:
Point c;//圆心
double r;//半径
double db, de;//圆弧度数起点, 圆弧度数终点(逆时针0-360)
//-------圆---------
//判断圆在多边形内
bool inside( Polygon &_Off)
{
if(_Off.ahas(c) == false)
return false;
for(int i = 0; i < _Off.n; i ++)
{
Line l = Line(_Off.pt[i], _Off.pt[(i + 1) % _Off.n]);
if(l.dis(c, true) < r - eps)
return false;
}
return true;
}
//判断多边形在圆内(线段和折线类似)
bool has( Polygon &_Off)
{
for(int i = 0; i < _Off.n; i ++)
if( getdis2(_Off.pt[i],c) > r * r - eps)
return false;
return true;
}
//-------圆弧-------
//圆被其他圆截得的圆弧,参数:圆[_Off]
Circle operator-(Circle &_Off) const
{
//注意圆必须相交,圆心不能重合
double d2 = getdis2(c,_Off.c);
double d = getdis(c,_Off.c);
double ans = acos((d2 + r * r - _Off.r * _Off.r) / (2 * d * r));
Point py = _Off.c - c;
double oans = atan2(py.y, py.x);
Circle res;
res.c = c;
res.r = r;
res.db = oans + ans;
res.de = oans - ans + 2 * PI;
return res;
}
//圆被其他圆截得的圆弧,参数:圆[_Off]
Circle operator+(Circle &_Off) const
{
//注意圆必须相交,圆心不能重合
double d2 = getdis2(c,_Off.c);
double d = getdis(c,_Off.c);
double ans = acos((d2 + r * r - _Off.r * _Off.r) / (2 * d * r));
Point py = _Off.c - c;
double oans = atan2(py.y, py.x);
Circle res;
res.c = c;
res.r = r;
res.db = oans - ans;
res.de = oans + ans;
return res;
}
//过圆外一点的两条切线
//参数:点[_Off](必须在圆外),返回:两条切线(切线的s点为_Off,e点为切点)
pair<Line, Line> tangent( Point &_Off)
{
double d = getdis(c,_Off);
//计算角度偏移的方式
double angp = acos(r / d), ango = atan2(_Off.y - c.y, _Off.x - c.x);
Point pl = Point(c.x + r * cos(ango + angp), c.y + r * sin(ango + angp)),
pr = Point(c.x + r * cos(ango - angp), c.y + r * sin(ango - angp));
return make_pair(Line(_Off, pl), Line(_Off, pr));
}
//计算直线和圆的两个交点
//参数:直线[_Off](两点式),返回两个交点,注意直线必须和圆有两个交点
pair<Point, Point> cross(Line _Off)
{
_Off.pton();
//到直线垂足的距离
double td = fabs(_Off.a * c.x + _Off.b * c.y + _Off.c) / sqrt(_Off.a * _Off.a + _Off.b * _Off.b);
//计算垂足坐标
double xp = (_Off.b * _Off.b * c.x - _Off.a * _Off.b * c.y - _Off.a * _Off.c) / ( _Off.a * _Off.a + _Off.b * _Off.b);
double yp = (- _Off.a * _Off.b * c.x + _Off.a * _Off.a * c.y - _Off.b * _Off.c) / (_Off.a * _Off.a + _Off.b * _Off.b);
double ango = atan2(yp - c.y, xp - c.x);
double angp = acos(td / r);
return make_pair(Point(c.x + r * cos(ango + angp), c.y + r * sin(ango + angp)),
Point(c.x + r * cos(ango - angp), c.y + r * sin(ango - angp)));
}
};
class triangle
{
public:
Point a, b, c;//顶点
triangle(){}
triangle(Point a, Point b, Point c): a(a), b(b), c(c){}
//计算三角形面积
double area()
{
return fabs( xmult(a, b, c)) / 2.0;
}
//计算三角形外心
//返回:外接圆圆心
Point circumcenter()
{
double pa = a.x * a.x + a.y * a.y;
double pb = b.x * b.x + b.y * b.y;
double pc = c.x * c.x + c.y * c.y;
double ta = pa * ( b.y - c.y) - pb * ( a.y - c.y) + pc * ( a.y - b.y);
double tb = -pa * ( b.x - c.x) + pb * ( a.x - c.x) - pc * ( a.x - b.x);
double tc = a.x * ( b.y - c.y) - b.x * ( a.y - c.y) + c.x * ( a.y - b.y);
return Point( ta / 2.0 / tc, tb / 2.0 / tc);
}
//计算三角形内心
//返回:内接圆圆心
Point incenter()
{
Line u, v;
double m, n;
u.s = a;
m = atan2(b.y - a.y, b.x - a.x);
n = atan2(c.y - a.y, c.x - a.x);
u.e.x = u.s.x + cos((m + n) / 2);
u.e.y = u.s.y + sin((m + n) / 2);
v.s = b;
m = atan2(a.y - b.y, a.x - b.x);
n = atan2(c.y - b.y, c.x - b.x);
v.e.x = v.s.x + cos((m + n) / 2);
v.e.y = v.s.y + sin((m + n) / 2);
Point ret;
Line::crossLPt(u,v,ret);
return ret;
}
//计算三角形垂心
//返回:高的交点
Point perpencenter()
{
Line u,v;
u.s = c;
u.e.x = u.s.x - a.y + b.y;
u.e.y = u.s.y + a.x - b.x;
v.s = b;
v.e.x = v.s.x - a.y + c.y;
v.e.y = v.s.y + a.x - c.x;
Point ret;
Line::crossLPt(u,v,ret);
return ret;
}
//计算三角形重心
//返回:重心
//到三角形三顶点距离的平方和最小的点
//三角形内到三边距离之积最大的点
Point barycenter()
{
Line u,v;
u.s.x = (a.x + b.x) / 2;
u.s.y = (a.y + b.y) / 2;
u.e = c;
v.s.x = (a.x + c.x) / 2;
v.s.y = (a.y + c.y) / 2;
v.e = b;
Point ret;
Line::crossLPt(u,v,ret);
return ret;
}
//计算三角形费马点
//返回:到三角形三顶点距离之和最小的点
Point fermentPoint()
{
Point u, v;
double step = fabs(a.x) + fabs(a.y) + fabs(b.x) + fabs(b.y) + fabs(c.x) + fabs(c.y);
int i, j, k;
u.x = (a.x + b.x + c.x) / 3;
u.y = (a.y + b.y + c.y) / 3;
while (step > eps)
{
for (k = 0; k < 10; step /= 2, k ++)
{
for (i = -1; i <= 1; i ++)
{
for (j =- 1; j <= 1; j ++)
{
v.x = u.x + step * i;
v.y = u.y + step * j;
if (getdis(u,a) + getdis(u,b) + getdis(u,c) > getdis(v,a) + getdis(v,b) + getdis(v,c))
u = v;
}
}
}
}
return u;
}
};
int main(){
return 0;
}