• poj 1442 -- Black Box


    Black Box
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 7183   Accepted: 2920

    Description

    Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

    ADD (x): put element x into Black Box;
    GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.

    Let us examine a possible sequence of 11 transactions:

    Example 1

    N Transaction i Black Box contents after transaction Answer
    (elements are arranged by non-descending)
    1 ADD(3) 0 3
    2 GET 1 3 3
    3 ADD(1) 1 1, 3
    4 GET 2 1, 3 3
    5 ADD(-4) 2 -4, 1, 3
    6 ADD(2) 2 -4, 1, 2, 3
    7 ADD(8) 2 -4, 1, 2, 3, 8
    8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8
    9 GET 3 -1000, -4, 1, 2, 3, 8 1
    10 GET 4 -1000, -4, 1, 2, 3, 8 2
    11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

    It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.


    Let us describe the sequence of transactions by two integer arrays:


    1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

    2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

    The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.

    Input

    Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

    Output

    Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

    Sample Input

    7 4
    3 1 -4 2 8 -1000 2
    1 2 6 6

    Sample Output

    3
    3
    1
    2

    题意:用测试数据解释。给出7个数,4次操作。第一次操作是1,说明前一个数中第一小的数是多少,第二次操作是2,说明前2个数中第2小的是多少,
    第三次操作是6,说明前6个数中第3小的是多少。第四次操作是6,说明前6个中第4小的是多少。

    思路:用到两个堆,一个最大堆,一个最小堆。其中最大堆用来维护,最小堆用来求k小数。

     1 /*======================================================================
     2  *           Author :   kevin
     3  *         Filename :   BlackBox.cpp
     4  *       Creat time :   2014-07-28 15:46
     5  *      Description :
     6  ========================================================================*/
     7 #include <iostream>
     8 #include <algorithm>
     9 #include <cstdio>
    10 #include <cstring>
    11 #include <queue>
    12 #include <cmath>
    13 #define clr(a,b) memset(a,b,sizeof(a))
    14 #define M 30005
    15 using namespace std;
    16 int s[M];
    17 struct cmp
    18 {
    19     bool operator() (const int& x,const int& y){
    20         return x > y;
    21     }
    22 };
    23 int main(int argc,char *argv[])
    24 {
    25     int n,m;
    26     while(scanf("%d%d",&n,&m)!=EOF){
    27         priority_queue<int>max;
    28         priority_queue<int,vector<int>,cmp>min;
    29         for(int i = 0; i < n; i++){
    30             scanf("%d",&s[i]);
    31         }
    32         int a,t = 0,minheap,maxheap;
    33         for(int i = 0; i < m; i++){
    34             scanf("%d",&a);
    35             for(int i = t; i < a; i++){
    36                 min.push(s[i]);
    37                 if(!max.empty()){
    38                     minheap = min.top();
    39                     maxheap = max.top();
    40                     if(minheap < maxheap){
    41                         min.pop(); max.pop();
    42                         min.push(maxheap);
    43                         max.push(minheap);
    44                     }
    45                 }
    46             }
    47             t = a;
    48             printf("%d
    ",min.top());
    49             max.push(min.top());
    50             min.pop();
    51         }
    52     }
    53     return 0;
    54 }
    View Code
  • 相关阅读:
    Spring 整合Struts2 + hibernate
    回调机制
    Struts2配置RESULT中TYPE的参数说明
    hibernate:通用DAO+动态生成HQL语句
    java API chm html 1.5 1.6 中文版英文版 帮助文档
    generator class中各项值的作用及定义
    Hibernate 中 set 里的属性及定义
    一个人的前端项目,踩过的那些坑,一一道来。
    哪些个在 Sublime Text 下,"任性的" 好插件!
    深度挖掘,Html5的 Range 滑动刻度的坑,兼容全平台,将任性进行到底!
  • 原文地址:https://www.cnblogs.com/ubuntu-kevin/p/3873410.html
Copyright © 2020-2023  润新知