• poj 2151 -- Check the difficulty of problems


    Check the difficulty of problems
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 4700   Accepted: 2057

    Description

    Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
    1. All of the teams solve at least one problem.
    2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.

    Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.

    Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?

    Input

    The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

    Output

    For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

    Sample Input

    2 2 2
    0.9 0.9
    1 0.9
    0 0 0
    

    Sample Output

    0.972

    思路: 概率dp。
        dp[i][j][k] 表示第i个人前j个题做对k个的概率。
        dp[i][j][k] = dp[i][j-1][k]*(1-g[i][j]) + dp[i][j][k-1]*g[i][j];
     1 /*======================================================================
     2  *           Author :   kevin
     3  *         Filename :   CheckTheDifficultOfProblem.cpp
     4  *       Creat time :   2014-07-25 10:33
     5  *      Description :
     6 ========================================================================*/
     7 #include <iostream>
     8 #include <algorithm>
     9 #include <cstdio>
    10 #include <cstring>
    11 #include <queue>
    12 #include <cmath>
    13 #define clr(a,b) memset(a,b,sizeof(a))
    14 #define M 1005
    15 using namespace std;
    16 double g[M][35],dp[M][35][35];
    17 int main(int argc,char *argv[])
    18 {
    19     int n,t,m;
    20     while(scanf("%d%d%d",&n,&t,&m), n | t | m){
    21         for(int i = 0; i < t; i++){
    22             for(int j = 1; j <= n; j++){
    23                 scanf("%lf",&g[i][j]);
    24             }
    25         }
    26         clr(dp,0);
    27         for(int i = 0; i < t; i++){
    28             dp[i][0][0] = 1;
    29             for(int j = 1; j <= n; j++){
    30                 dp[i][j][0] = dp[i][j-1][0] * (1-g[i][j]);
    31                 for(int k = 1; k <= j; k++){
    32                     dp[i][j][k] = dp[i][j-1][k]*(1-g[i][j])+dp[i][j-1][k-1]*g[i][j];
    33                 }
    34             }
    35         }
    36         double s = 1;
    37         for(int i = 0; i < t; i++){
    38             s *= (1-dp[i][n][0]);
    39         }
    40         double ss = 1;
    41         for(int i = 0; i < t; i++){
    42             double tem = 0;
    43             for(int j = 1; j < m; j++){
    44                 tem += dp[i][n][j];
    45             }
    46             ss *= tem;
    47         }
    48         s -= ss;
    49         printf("%.3lf
    ",s);
    50     }
    51     return 0;
    52 }
    View Code
  • 相关阅读:
    可变参数函数总结
    小例子一步一步解释“函数调用过程中栈的变化过程”
    自己动手实现C标准库中sqrt()函数
    无符号整数翻转函数实现reverse_bits(unsigned int value)
    stdarg.h源代码
    判断两个字符串s1 s2所含字符是否相同
    亚马逊20120915网上机试第一题:atoi函数
    [wp7软件]wp7~~HTC官方软件~~集合贴~~
    [wp7软件]wp7~~相册加密软件~~集合贴~~
    [wp7软件]wp7~~密码管理软件~~集合贴~~
  • 原文地址:https://www.cnblogs.com/ubuntu-kevin/p/3868317.html
Copyright © 2020-2023  润新知