多项式 Taylor 展开
泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具 [3] 。
--- baidu baike
多项式复合函数
G(f), f 是多项式。
多项式复合函数的导数是对 f 求导。
即, f = a0 + a1x + ..., A(x) = b0 + b1x + ..., G(f) = f2 + A(x), 那么 G(f) 对 f 求导得到 G'(f) = 2f, A(x)
不会随着 f 改变而改变, 所以算是常数项, 别忘了现在是在对 f 求导。
多项式泰勒展开
对于多项式复合函数 G(f), 若已知其在 f0 处的取值 G(f0), 那么其在任意 f 处的取值 G(f) 则可如此表示:
当然, 这里的 n 阶导数是对 f 求导的。
Newton's Method
多项式方程的解
给定多项式复合函数 G(x), 求多项式 F(x) mod xn 使得 G(F(x)) ≡ 0 ( mod xn)
考虑倍增法, 已知 (G(f'(x)) equiv 0 mod x^{n/2}), 考虑拓展到 (G(f(x))equiv 0 mod x^n), 泰勒展开一下有:
然而由于
那么就可以很 nice 地得出:
例子:多项式求逆
给定 A(x), 要求 B(x) 满足 A(x)B(x) ≡ 1 mod xn。
(A(x)B(x)equiv 1), (dfrac1{B(x)} - A(x) equiv 0), 是个多项式方程, (G(f) = dfrac 1f - A(x)), (G'(f) = -f^{-2} = -dfrac 1{f^2})。
代入牛顿迭代式:
例子:多项式 exp
给定 A(x), 要求 B(x) 满足 B(x) ≡ eA(x) mod xn。
首先两边取 ln, (ln B(x) - A(x) equiv 0), 是个多项式方程,(G(f) = ln f - A(x)), (G'(f) = dfrac 1{f})。
代入牛顿迭代式: