• POJ 3662 Telephone Lines (dijstra+二分)


    题意:有N个独立点,其中有P对可用电缆相连的点,要使点1与点N连通,在K条电缆免费的情况下,问剩下的电缆中,长度最大的电缆可能的最小值为多少。

    分析:

    1、二分临界线(符合的情况的点在右边),找可能的最小值,假设为mid。

    2、将大于mid的边变为1,小于等于mid的边变为0(表示这些边由自己承包),由此算出1~N的最短路长度为x。x即为所用的大于mid的电缆个数。

    3、若x<=K,则符合情况,但是想让所用的免费电缆条数x更多,所以让mid更小一些,这样自己承包的边也减少,x将更大,即r = mid;

    4、若x>K,则所用免费电缆条数x超过了K条,不再符合题意,自己承包的边过少了,所以l = mid + 1;

    #pragma comment(linker, "/STACK:102400000, 102400000")
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<cmath>
    #include<iostream>
    #include<sstream>
    #include<iterator>
    #include<algorithm>
    #include<string>
    #include<vector>
    #include<set>
    #include<map>
    #include<stack>
    #include<deque>
    #include<queue>
    #include<list>
    #define Min(a, b) ((a < b) ? a : b)
    #define Max(a, b) ((a < b) ? b : a)
    const double eps = 1e-8;
    inline int dcmp(double a, double b){
        if(fabs(a - b) < eps) return 0;
        return a > b ? 1 : -1;
    }
    typedef long long LL;
    typedef unsigned long long ULL;
    const int INT_INF = 0x3f3f3f3f;
    const int INT_M_INF = 0x7f7f7f7f;
    const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
    const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
    const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
    const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
    const int MOD = 1e9 + 7;
    const double pi = acos(-1.0);
    const int MAXN = 1000 + 10;
    const int MAXT = 10000 + 10;
    using namespace std;
    int N, P, K;
    struct Edge{
        int from, to, dist;
        Edge(int f, int t, int d):from(f), to(t), dist(d){}
    };
    struct HeapNode{
        int d, u;
        HeapNode(int dd, int uu):d(dd), u(uu){}
        bool operator < (const HeapNode& rhs)const{
            return d > rhs.d;
        }
    };
    struct Dijkstra{
        int n, m;
        vector<Edge> edges;
        vector<int> G[MAXN];
        bool done[MAXN];
        int d[MAXN];
        int p[MAXN];
        void init(int n){
            this -> n = n;
            for(int i = 0; i < n; ++i) G[i].clear();
            edges.clear();
        }
        void AddEdge(int from, int to, int dist){
            edges.push_back(Edge(from, to, dist));
            m = edges.size();
            G[from].push_back(m - 1);
        }
        void dijkstra(int s, int t){
            priority_queue<HeapNode> Q;
            for(int i = 0; i < N; ++i) d[i] = INT_INF;
            d[s] = 0;
            memset(done, 0, sizeof done);
            Q.push(HeapNode(0, s));
            while(!Q.empty()){
                HeapNode x = Q.top();
                Q.pop();
                int u = x.u;
                if(done[u]) continue;
                done[u] = true;
                for(int i = 0; i < G[u].size(); ++i){
                    Edge& e = edges[G[u][i]];
                    int tmp = e.dist > t ? 1 : 0;
                    if(d[e.to] > d[u] + tmp){
                        d[e.to] = d[u] + tmp;
                        p[e.to] = G[u][i];
                        Q.push(HeapNode(d[e.to], e.to));
                    }
                }
            }
        }
    }dij;
    bool judge(int x){
        dij.dijkstra(0, x);
        if(dij.d[N - 1] <= K) return true;
        return false;
    }
    int solve(){
        int l = 0, r = 1e6;
        while(l < r){
            int mid = l + (r - l) / 2;
            if(judge(mid)) r = mid;
            else l = mid + 1;
        }
        if(judge(r)) return r;
        return -1;
    }
    int main(){
        dij.init(N);
        scanf("%d%d%d", &N, &P, &K);
        for(int i = 0; i < P; ++i){
            int a, b, l;
            scanf("%d%d%d", &a, &b, &l);
            dij.AddEdge(a - 1, b - 1, l);
            dij.AddEdge(b - 1, a - 1, l);
        }
        printf("%d\n", solve());
        return 0;
    }
    

      

  • 相关阅读:
    利用python对新浪微博用户标签进行分词并推荐相关用户
    企业微信公众平台建设指南
    微信5.0:可定制菜单栏、移动支付、公众账号付费订阅
    jquery 控件使用 讲解 连载
    网络那些事
    拒绝访问 无法删除文件的解决方法
    Ubuntu9.10下安装Maya8.5(Finish)
    Ubuntu 9.10 更新软件源列表
    [转载]PHP的Class分页
    PHP与Mysql的连接
  • 原文地址:https://www.cnblogs.com/tyty-Somnuspoppy/p/6490012.html
Copyright © 2020-2023  润新知