题意:有N个独立点,其中有P对可用电缆相连的点,要使点1与点N连通,在K条电缆免费的情况下,问剩下的电缆中,长度最大的电缆可能的最小值为多少。
分析:
1、二分临界线(符合的情况的点在右边),找可能的最小值,假设为mid。
2、将大于mid的边变为1,小于等于mid的边变为0(表示这些边由自己承包),由此算出1~N的最短路长度为x。x即为所用的大于mid的电缆个数。
3、若x<=K,则符合情况,但是想让所用的免费电缆条数x更多,所以让mid更小一些,这样自己承包的边也减少,x将更大,即r = mid;
4、若x>K,则所用免费电缆条数x超过了K条,不再符合题意,自己承包的边过少了,所以l = mid + 1;
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 1000 + 10; const int MAXT = 10000 + 10; using namespace std; int N, P, K; struct Edge{ int from, to, dist; Edge(int f, int t, int d):from(f), to(t), dist(d){} }; struct HeapNode{ int d, u; HeapNode(int dd, int uu):d(dd), u(uu){} bool operator < (const HeapNode& rhs)const{ return d > rhs.d; } }; struct Dijkstra{ int n, m; vector<Edge> edges; vector<int> G[MAXN]; bool done[MAXN]; int d[MAXN]; int p[MAXN]; void init(int n){ this -> n = n; for(int i = 0; i < n; ++i) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int dist){ edges.push_back(Edge(from, to, dist)); m = edges.size(); G[from].push_back(m - 1); } void dijkstra(int s, int t){ priority_queue<HeapNode> Q; for(int i = 0; i < N; ++i) d[i] = INT_INF; d[s] = 0; memset(done, 0, sizeof done); Q.push(HeapNode(0, s)); while(!Q.empty()){ HeapNode x = Q.top(); Q.pop(); int u = x.u; if(done[u]) continue; done[u] = true; for(int i = 0; i < G[u].size(); ++i){ Edge& e = edges[G[u][i]]; int tmp = e.dist > t ? 1 : 0; if(d[e.to] > d[u] + tmp){ d[e.to] = d[u] + tmp; p[e.to] = G[u][i]; Q.push(HeapNode(d[e.to], e.to)); } } } } }dij; bool judge(int x){ dij.dijkstra(0, x); if(dij.d[N - 1] <= K) return true; return false; } int solve(){ int l = 0, r = 1e6; while(l < r){ int mid = l + (r - l) / 2; if(judge(mid)) r = mid; else l = mid + 1; } if(judge(r)) return r; return -1; } int main(){ dij.init(N); scanf("%d%d%d", &N, &P, &K); for(int i = 0; i < P; ++i){ int a, b, l; scanf("%d%d%d", &a, &b, &l); dij.AddEdge(a - 1, b - 1, l); dij.AddEdge(b - 1, a - 1, l); } printf("%d\n", solve()); return 0; }