题意:在一个R*C(R, C<=100)的整数矩阵上找一条高度严格递减的最长路。起点任意,但每次只能沿着上下左右4个方向之一走一格,并且不能走出矩阵外。矩阵中的数均为0~100。
分析:dp[x][y]为从位置(x,y)出发的最长路。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 100 + 10; const int MAXT = 10000 + 10; using namespace std; int dp[MAXN][MAXN]; int pic[MAXN][MAXN]; int r, c; bool judge(int x, int y){ return x >= 0 && x < r && y >= 0 && y < c; } int dfs(int x, int y){ if(dp[x][y] != -1) return dp[x][y]; int ans = 0; for(int i = 0; i < 4; ++i){ int tmpx = x + dr[i]; int tmpy = y + dc[i]; if(judge(tmpx, tmpy) && pic[tmpx][tmpy] < pic[x][y]){ ans = Max(ans, dfs(tmpx, tmpy)); } } return dp[x][y] = ans + 1; } int main(){ int T; scanf("%d", &T); while(T--){ string name; cin >> name; scanf("%d%d", &r, &c); for(int i = 0; i < r; ++i){ for(int j = 0; j < c; ++j){ scanf("%d", &pic[i][j]); } } memset(dp, -1, sizeof dp); int ans = 0; for(int i = 0; i < r; ++i){ for(int j = 0; j < c; ++j){ ans = Max(ans, dfs(i, j)); } } printf("%s: %d\n", name.c_str(), ans); } return 0; }