题意:某公司有1个老板和n(n<=105)个员工组成树状结构,除了老板之外每个员工都有唯一的直属上司。老板的编号为0,员工编号为1~n。无下属的员工(叶子)打算签署一项请愿书递给老板,但不能跨级递,只能递给直属上司。当一个中级员工(非叶子)的直属下属中不小于T%的人签字时,他也会签字并且递给他的直属上司。问:要让公司老板收到请愿书,至少需要多少个工人签字?
分析:
1、dfs(u)表示让u给上级发信最少需要多少个工人。
2、需要在u的孩子结点中选择不小于T%的人数,这些人所需的工人签字越少越好,所以需要排序。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 1e5 + 10; const int MAXT = 10000 + 10; using namespace std; vector<int> v[MAXN]; int N, T; int dfs(int cur){ int len = v[cur].size(); if(!len) return 1; vector<int> tmp; for(int i = 0; i < len; ++i){ tmp.push_back(dfs(v[cur][i])); } sort(tmp.begin(), tmp.end()); int cnt = (int)ceil(len * (double)T / 100); int ans = 0; for(int i = 0; i < cnt; ++i){ ans += tmp[i]; } return ans; } int main(){ while(scanf("%d%d", &N, &T) == 2){ if(!N && !T) return 0; for(int i = 0; i < MAXN; ++i) v[i].clear(); for(int i = 1; i <= N; ++i){ int x; scanf("%d", &x); v[x].push_back(i); } printf("%d\n", dfs(0)); } return 0; }