• Spark机器学习5·回归模型(pyspark)


    • 分类模型的预测目标是:类别编号
    • 回归模型的预测目标是:实数变量

    回归模型种类

    • 线性模型
      • 最小二乘回归模型
      • 应用L2正则化时--岭回归(ridge regression)
      • 应用L1正则化时--LASSO(Least Absolute Shrinkage and Selection Operator)
    • 决策树
      • 不纯度度量方法:方差

    0 准备数据

    archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.zip

    sed 1d hour.csv > hour_noheader.csv
    

    0 运行环境

    export SPARK_HOME=/Users/erichan/garden/spark-1.5.1-bin-hadoop2.6
    export PYTHONPATH=${SPARK_HOME}/python/:${SPARK_HOME}/python/lib/py4j-0.8.2.1-src.zip
    
    cd $SPARK_HOME
    IPYTHON=1 IPYTHON_OPTS="--pylab" ./bin/pyspark --driver-memory 4G --executor-memory 4G --driver-cores 2
    
    from pyspark.mllib.regression import LabeledPoint
    from pyspark.mllib.regression import LinearRegressionWithSGD
    from pyspark.mllib.tree import DecisionTree
    import numpy as np
    

    1 抽取特征

    PATH = "/Users/erichan/sourcecode/book/Spark机器学习"
    raw_data = sc.textFile("%s/Bike-Sharing-Dataset/hour_noheader.csv" % PATH)
    num_data = raw_data.count()
    records = raw_data.map(lambda x: x.split(","))
    
    first = records.first()
    print first
    print num_data
    

    [u'1', u'2011-01-01', u'1', u'0', u'1', u'0', u'0', u'6', u'0', u'1', u'0.24', u'0.2879', u'0.81', u'0', u'3', u'13', u'16']

    17379

    1.1 转换为二元向量

    # cache the dataset to speed up subsequent operations
    records.cache()
    def get_mapping(rdd, idx):
        return rdd.map(lambda fields: fields[idx]).distinct().zipWithIndex().collectAsMap()
    
    print "Mapping of first categorical feasture column: %s" % get_mapping(records, 2)
    

    Mapping of first categorical feasture column: {u'1': 0, u'3': 1, u'2': 2, u'4': 3}

    mappings = [get_mapping(records, i) for i in range(2,10)]
    cat_len = sum(map(len, mappings))
    num_len = len(records.first()[11:15])
    total_len = num_len + cat_len
    
    print "Feature vector length for categorical features: %d" % cat_len
    print "Feature vector length for numerical features: %d" % num_len
    print "Total feature vector length: %d" % total_len
    

    Feature vector length for categorical features: 57

    Feature vector length for numerical features: 4

    Total feature vector length: 61

    1.2 创建线性模型特征向量

    # 提取特征
    def extract_features(record):
        cat_vec = np.zeros(cat_len)
        i = 0
        step = 0
        for field in record[2:9]:
            m = mappings[i]
            idx = m[field]
            cat_vec[idx + step] = 1
            i = i + 1
            step = step + len(m)
        num_vec = np.array([float(field) for field in record[10:14]])
        return np.concatenate((cat_vec, num_vec))
    
    # 提取标签
    def extract_label(record):
         return float(record[-1])
    
    data = records.map(lambda r: LabeledPoint(extract_label(r), extract_features(r)))
    
    first_point = data.first()
    print "Raw data: " + str(first[2:])
    print "Label: " + str(first_point.label)
    print "Linear Model feature vector:
    " + str(first_point.features)
    print "Linear Model feature vector length: " + str(len(first_point.features))
    

    Raw data: [u'1', u'0', u'1', u'0', u'0', u'6', u'0', u'1', u'0.24', u'0.2879', u'0.81', u'0', u'3', u'13', u'16']

    Label: 16.0

    Linear Model feature vector:
    [1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.24,0.2879,0.81,0.0]

    Linear Model feature vector length: 61

    1.3 创建决策树模型特征向量

    def extract_features_dt(record):
        return np.array(map(float, record[2:14]))
    
    data_dt = records.map(lambda r: LabeledPoint(extract_label(r), extract_features_dt(r)))
    
    first_point_dt = data_dt.first()
    print "Decision Tree feature vector: " + str(first_point_dt.features)
    print "Decision Tree feature vector length: " + str(len(first_point_dt.features))
    

    Decision Tree feature vector: [1.0,0.0,1.0,0.0,0.0,6.0,0.0,1.0,0.24,0.2879,0.81,0.0]

    Decision Tree feature vector length: 12

    2 训练

    2.1 帮助

    help(LinearRegressionWithSGD.train)
    help(DecisionTree.trainRegressor)
    

    2.2 训练线性模型并测试预测效果

    linear_model = LinearRegressionWithSGD.train(data, iterations=10, step=0.1, intercept=False)
    true_vs_predicted = data.map(lambda p: (p.label, linear_model.predict(p.features)))
    print "Linear Model predictions: " + str(true_vs_predicted.take(5))
    

    Linear Model predictions: [(16.0, 117.89250386724845), (40.0, 116.2249612319211), (32.0, 116.02369145779234), (13.0, 115.67088016754433), (1.0, 115.56315650834317)]

    2.3 训练决策树模型并测试预测效果

    dt_model = DecisionTree.trainRegressor(data_dt, {})
    preds = dt_model.predict(data_dt.map(lambda p: p.features))
    actual = data.map(lambda p: p.label)
    true_vs_predicted_dt = actual.zip(preds)
    
    print "Decision Tree predictions: " + str(true_vs_predicted_dt.take(5))
    print "Decision Tree depth: " + str(dt_model.depth())
    print "Decision Tree number of nodes: " + str(dt_model.numNodes())
    

    Decision Tree predictions: [(16.0, 54.913223140495866), (40.0, 54.913223140495866), (32.0, 53.171052631578945), (13.0, 14.284023668639053), (1.0, 14.284023668639053)]

    Decision Tree depth: 5

    Decision Tree number of nodes: 63

    3 评估性能

    评估回归模型的方法:

    • 均方误差(MSE, Mean Sequared Error)
    • 均方根误差(RMSE, Root Mean Squared Error)
    • 平均绝对误差(MAE, Mean Absolute Error)
    • R-平方系数(R-squared coefficient)
    • 均方根对数误差(RMSLE)

    3.1 均方误差&均方根误差

    def squared_error(actual, pred):
        return (pred - actual)**2
    
    mse = true_vs_predicted.map(lambda (t, p): squared_error(t, p)).mean()
    mse_dt = true_vs_predicted_dt.map(lambda (t, p): squared_error(t, p)).mean()
    
    cat_features = dict([(i - 2, len(get_mapping(records, i)) + 1) for i in range(2,10)])
    
    # train the model again
    dt_model_2 = DecisionTree.trainRegressor(data_dt, categoricalFeaturesInfo=cat_features)
    preds_2 = dt_model_2.predict(data_dt.map(lambda p: p.features))
    actual_2 = data.map(lambda p: p.label)
    true_vs_predicted_dt_2 = actual_2.zip(preds_2)
    
    # compute performance metrics for decision tree model
    mse_dt_2 = true_vs_predicted_dt_2.map(lambda (t, p): squared_error(t, p)).mean()
    
    print "Linear Model - Mean Squared Error: %2.4f" % mse
    print "Decision Tree - Mean Squared Error: %2.4f" % mse_dt
    print "Categorical feature size mapping %s" % cat_features
    print "Decision Tree [Categorical feature]- Mean Squared Error: %2.4f" % mse_dt_2
    

    Linear Model - Mean Squared Error: 30679.4539

    Decision Tree - Mean Squared Error: 11560.7978

    Decision Tree [Categorical feature]- Mean Squared Error: 7912.5642

    3.2 平均绝对误差

    def abs_error(actual, pred):
        return np.abs(pred - actual)
    
    mae = true_vs_predicted.map(lambda (t, p): abs_error(t, p)).mean()
    mae_dt = true_vs_predicted_dt.map(lambda (t, p): abs_error(t, p)).mean()
    mae_dt_2 = true_vs_predicted_dt_2.map(lambda (t, p): abs_error(t, p)).mean()
    
    print "Linear Model - Mean Absolute Error: %2.4f" % mae
    print "Decision Tree - Mean Absolute Error: %2.4f" % mae_dt
    print "Decision Tree [Categorical feature]- Mean Absolute Error: %2.4f" % mae_dt_2
    

    Linear Model - Mean Absolute Error: 130.6429

    Decision Tree - Mean Absolute Error: 71.0969

    Decision Tree [Categorical feature]- Mean Absolute Error: 59.4409

    3.3 均方根对数误差

    def squared_log_error(pred, actual):
        return (np.log(pred + 1) - np.log(actual + 1))**2
    
    rmsle = np.sqrt(true_vs_predicted.map(lambda (t, p): squared_log_error(t, p)).mean())
    rmsle_dt = np.sqrt(true_vs_predicted_dt.map(lambda (t, p): squared_log_error(t, p)).mean())
    rmsle_dt_2 = np.sqrt(true_vs_predicted_dt_2.map(lambda (t, p): squared_log_error(t, p)).mean())
    
    print "Linear Model - Root Mean Squared Log Error: %2.4f" % rmsle
    print "Decision Tree - Root Mean Squared Log Error: %2.4f" % rmsle_dt
    print "Decision Tree [Categorical feature]- Root Mean Squared Log Error: %2.4f" % rmsle_dt_2
    

    Linear Model - Root Mean Squared Log Error: 1.4653

    Decision Tree - Root Mean Squared Log Error: 0.6259

    Decision Tree [Categorical feature]- Root Mean Squared Log Error: 0.6192

    4 改进和调优

    targets = records.map(lambda r: float(r[-1])).collect()
    
    hist(targets, bins=40, color='lightblue', normed=True)
    fig = matplotlib.pyplot.gcf()
    fig.set_size_inches(16, 10)
    

    6_4

    因为**不符合正态分布**,所以**对数变换**(用目标值的对数代替原始数值)或者平方根

    4.1 对数变换

    log_targets = records.map(lambda r: np.log(float(r[-1]))).collect()
    
    hist(log_targets, bins=40, color='lightblue', normed=True)
    fig = matplotlib.pyplot.gcf()
    fig.set_size_inches(16, 10)
    

    6_5

    4.2 平方根变换

    sqrt_targets = records.map(lambda r: np.sqrt(float(r[-1]))).collect()
    
    hist(sqrt_targets, bins=40, color='lightblue', normed=True)
    fig = matplotlib.pyplot.gcf()
    fig.set_size_inches(16, 10)
    

    6_6

    4.3 对数变换的影响

    data_log = data.map(lambda lp: LabeledPoint(np.log(lp.label), lp.features))
    model_log = LinearRegressionWithSGD.train(data_log, iterations=10, step=0.1)
    true_vs_predicted_log = data_log.map(lambda p: (np.exp(p.label), np.exp(model_log.predict(p.features))))
    
    data_dt_log = data_dt.map(lambda lp: LabeledPoint(np.log(lp.label), lp.features))
    dt_model_log = DecisionTree.trainRegressor(data_dt_log, {})
    preds_log = dt_model_log.predict(data_dt_log.map(lambda p: p.features))
    actual_log = data_dt_log.map(lambda p: p.label)
    true_vs_predicted_dt_log = actual_log.zip(preds_log).map(lambda (t, p): (np.exp(t), np.exp(p)))
    
    mse_log = true_vs_predicted_log.map(lambda (t, p): squared_error(t, p)).mean()
    mae_log = true_vs_predicted_log.map(lambda (t, p): abs_error(t, p)).mean()
    rmsle_log = np.sqrt(true_vs_predicted_log.map(lambda (t, p): squared_log_error(t, p)).mean())
    
    mse_log_dt = true_vs_predicted_dt_log.map(lambda (t, p): squared_error(t, p)).mean()
    mae_log_dt = true_vs_predicted_dt_log.map(lambda (t, p): abs_error(t, p)).mean()
    rmsle_log_dt = np.sqrt(true_vs_predicted_dt_log.map(lambda (t, p): squared_log_error(t, p)).mean())
    
    print "Mean Squared Error: %2.4f" % mse_log
    print "Mean Absolute Error: %2.4f" % mae_log
    print "Root Mean Squared Log Error: %2.4f" % rmsle_log
    print "Non log-transformed predictions:
    " + str(true_vs_predicted.take(3))
    print "Log-transformed predictions:
    " + str(true_vs_predicted_log.take(3))
    print "Mean Squared Error: %2.4f" % mse_log_dt
    print "Mean Absolute Error: %2.4f" % mae_log_dt
    print "Root Mean Squared Log Error: %2.4f" % rmsle_log_dt
    print "Non log-transformed predictions:
    " + str(true_vs_predicted_dt.take(3))
    print "Log-transformed predictions:
    " + str(true_vs_predicted_dt_log.take(3))
    

    Mean Squared Error: 50685.5559

    Mean Absolute Error: 155.2955

    Root Mean Squared Log Error: 1.5411

    Non log-transformed predictions:
    [(16.0, 117.89250386724845), (40.0, 116.2249612319211), (32.0, 116.02369145779234)]

    Log-transformed predictions:
    [(15.999999999999998, 28.080291845456237), (40.0, 26.959480191001784), (32.0, 26.654725629458031)]

    Mean Squared Error: 14781.5760

    Mean Absolute Error: 76.4131

    Root Mean Squared Log Error: 0.6406

    Non log-transformed predictions:
    [(16.0, 54.913223140495866), (40.0, 54.913223140495866), (32.0, 53.171052631578945)]

    Log-transformed predictions:
    [(15.999999999999998, 37.530779787154522), (40.0, 37.530779787154522), (32.0, 7.2797070993907287)]

    4.4 为交叉验证创建训练集和测试集

    data_with_idx = data.zipWithIndex().map(lambda (k, v): (v, k))
    test = data_with_idx.sample(False, 0.2, 42)
    train = data_with_idx.subtractByKey(test)
    
    train_data = train.map(lambda (idx, p): p)
    test_data = test.map(lambda (idx, p) : p)
    
    data_with_idx_dt = data_dt.zipWithIndex().map(lambda (k, v): (v, k))
    test_dt = data_with_idx_dt.sample(False, 0.2, 42)
    train_dt = data_with_idx_dt.subtractByKey(test_dt)
    
    train_data_dt = train_dt.map(lambda (idx, p): p)
    test_data_dt = test_dt.map(lambda (idx, p) : p)
    
    train_size = train_data.count()
    test_size = test_data.count()
    print "Training data size: %d" % train_size
    print "Test data size: %d" % test_size
    print "Total data size: %d " % num_data
    print "Train + Test size : %d" % (train_size + test_size)
    

    Training data size: 13934

    Test data size: 3445

    Total data size: 17379

    Train + Test size : 17379

    4.5 线性模型调优

    1 评估函数
    def evaluate(train, test, iterations, step, regParam, regType, intercept):
        model = LinearRegressionWithSGD.train(train, iterations, step, regParam=regParam, regType=regType, intercept=intercept)
        tp = test.map(lambda p: (p.label, model.predict(p.features)))
        rmsle = np.sqrt(tp.map(lambda (t, p): squared_log_error(t, p)).mean())
        return rmsle
    
    2 迭代次数
    params = [1, 5, 10, 20, 50, 100]
    metrics = [evaluate(train_data, test_data, param, 0.01, 0.0, 'l2', False) for param in params]
    print params
    print metrics
    

    [1, 5, 10, 20, 50, 100]

    [2.8779465130028199, 2.0390187660391499, 1.7761565324837874, 1.5828778102209105, 1.4382263191764473, 1.4050638054019446]

    plot(params, metrics)
    fig = matplotlib.pyplot.gcf()
    pyplot.xscale('log')
    

    迭代次数与RMSLE关系图

    6_7

    3 步长
    params = [0.01, 0.025, 0.05, 0.1, 1.0]
    metrics = [evaluate(train_data, test_data, 10, param, 0.0, 'l2', False) for param in params]
    print params
    print metrics
    

    [0.01, 0.025, 0.05, 0.1, 1.0]

    [1.7761565324837874, 1.4379348243997032, 1.4189071944747715, 1.5027293911925559, nan]

    plot(params, metrics)
    fig = matplotlib.pyplot.gcf()
    pyplot.xscale('log')
    

    步长对预测结果的影响

    6_8

    4 L2正则化
    params = [0.0, 0.01, 0.1, 1.0, 5.0, 10.0, 20.0]
    metrics = [evaluate(train_data, test_data, 10, 0.1, param, 'l2', False) for param in params]
    print params
    print metrics
    plot(params, metrics)
    fig = matplotlib.pyplot.gcf()
    pyplot.xscale('log')
    

    [0.0, 0.01, 0.1, 1.0, 5.0, 10.0, 20.0]

    [1.5027293911925559, 1.5020646031965639, 1.4961903335175231, 1.4479313176192781, 1.4113329999970989, 1.5379824584440471, 1.8279564444985839]

    6_9

    5 L1正则化
    params = [0.0, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
    metrics = [evaluate(train_data, test_data, 10, 0.1, param, 'l1', False) for param in params]
    print params
    print metrics
    plot(params, metrics)
    fig = matplotlib.pyplot.gcf()
    pyplot.xscale('log')
    

    [0.0, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]

    [1.5027293911925559, 1.5026938950690176, 1.5023761634555699, 1.499412856617814, 1.4713669769550108, 1.7596682962964318, 4.7551250073268614]

    6_10

    model_l1 = LinearRegressionWithSGD.train(train_data, 10, 0.1, regParam=1.0, regType='l1', intercept=False)
    model_l1_10 = LinearRegressionWithSGD.train(train_data, 10, 0.1, regParam=10.0, regType='l1', intercept=False)
    model_l1_100 = LinearRegressionWithSGD.train(train_data, 10, 0.1, regParam=100.0, regType='l1', intercept=False)
    print "L1 (1.0) number of zero weights: " + str(sum(model_l1.weights.array == 0))
    print "L1 (10.0) number of zeros weights: " + str(sum(model_l1_10.weights.array == 0))
    print "L1 (100.0) number of zeros weights: " + str(sum(model_l1_100.weights.array == 0))
    

    L1 (1.0) number of zero weights: 4
    L1 (10.0) number of zeros weights: 33
    L1 (100.0) number of zeros weights: 58

    6 截距
    # Intercept
    params = [False, True]
    metrics = [evaluate(train_data, test_data, 10, 0.1, 1.0, 'l2', param) for param in params]
    print params
    print metrics
    bar(params, metrics, color='lightblue')
    fig = matplotlib.pyplot.gcf()
    

    [False, True]

    [1.4479313176192781, 1.4798261513419801]

    6_11

    4.6 决策树调优

    1 评估函数
    def evaluate_dt(train, test, maxDepth, maxBins):
        model = DecisionTree.trainRegressor(train, {}, impurity='variance', maxDepth=maxDepth, maxBins=maxBins)
        preds = model.predict(test.map(lambda p: p.features))
        actual = test.map(lambda p: p.label)
        tp = actual.zip(preds)
        rmsle = np.sqrt(tp.map(lambda (t, p): squared_log_error(t, p)).mean())
        return rmsle
    
    2 树深度
    params = [1, 2, 3, 4, 5, 10, 20]
    metrics = [evaluate_dt(train_data_dt, test_data_dt, param, 32) for param in params]
    print params
    print metrics
    plot(params, metrics)
    fig = matplotlib.pyplot.gcf()
    

    [1, 2, 3, 4, 5, 10, 20]

    [1.0280339660196287, 0.92686672078778276, 0.81807794023407532, 0.74060228537329209, 0.63583503599563096, 0.4276659008415965, 0.45481197001756291]

    6_12

    3 最大划分数
    params = [2, 4, 8, 16, 32, 64, 100]
    metrics = [evaluate_dt(train_data_dt, test_data_dt, 5, param) for param in params]
    print params
    print metrics
    plot(params, metrics)
    fig = matplotlib.pyplot.gcf()
    

    [2, 4, 8, 16, 32, 64, 100]

    [1.3076555360778914, 0.81721457107308615, 0.75651792347650992, 0.63786761731722474, 0.63583503599563096, 0.63583503599563096, 0.63583503599563096]

    6_13

  • 相关阅读:
    grep: Linux基础命令及用法 -- grep
    [功能集锦] 003
    [功能集锦] 002
    [mysql相关集锦] 001
    [eclipse中使用Git插件] 008
    [eclipse相关] 001
    [代码优化集锦]
    [功能集锦] 001
    [java基础] 002
    [java基础] 001
  • 原文地址:https://www.cnblogs.com/tychyg/p/5320930.html
Copyright © 2020-2023  润新知