• Spark机器学习2·准备数据(pyspark)


    准备环境

    anaconda

    nano ~/.zshrc
    export PATH=$PATH:/anaconda/bin
    source ~/.zshrc
    echo $HOME
    echo $PATH
    

    ipython

    conda update conda && conda update ipython ipython-notebook ipython-qtconsole
    conda install scipy
    

    PYTHONPATH

    export SPARK_HOME=/Users/erichan/garden/spark-1.5.1-bin-hadoop2.6
    export PYTHONPATH=${SPARK_HOME}/python/:${SPARK_HOME}/python/lib/py4j-0.8.2.1-src.zip
    

    运行环境

    cd $SPARK_HOME
    
    IPYTHON=1 IPYTHON_OPTS="--pylab" ./bin/pyspark
    

    数据

    1. 获取原始数据

    PATH = "/Users/erichan/sourcecode/book/Spark机器学习"
    user_data = sc.textFile("%s/ml-100k/u.user" % PATH)
    user_fields = user_data.map(lambda line: line.split("|"))
    movie_data = sc.textFile("%s/ml-100k/u.item" % PATH)
    movie_fields = movie_data.map(lambda lines: lines.split("|"))
    rating_data_raw = sc.textFile("%s/ml-100k/u.data" % PATH)
    rating_data = rating_data_raw.map(lambda line: line.split("	"))
    
    num_movies = movie_data.count()
    print num_movies
    

    1682

    user_data.first()
    

    u'1|24|M|technician|85711'

    movie_data.first()
    

    u'1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0'

    rating_data_raw.first()
    

    u'196 242 3 881250949'

    2. 探索数据

    2.1. 按列统计
    num_users = user_fields.map(lambda fields: fields[0]).count()
    num_genders = user_fields.map(lambda fields: fields[2]).distinct().count()
    num_occupations = user_fields.map(lambda fields: fields[3]).distinct().count()
    num_zipcodes = user_fields.map(lambda fields: fields[4]).distinct().count()
    
    ratings = rating_data.map(lambda fields: int(fields[2]))
    num_ratings = ratings.count()
    max_rating = ratings.reduce(lambda x, y: max(x, y))
    min_rating = ratings.reduce(lambda x, y: min(x, y))
    mean_rating = ratings.reduce(lambda x, y: x + y) / float(num_ratings)
    median_rating = np.median(ratings.collect())
    ratings_per_user = num_ratings / num_users
    ratings_per_movie = num_ratings / num_movies
    print "Users: %d, genders: %d, occupations: %d, ZIP codes: %d" % (num_users, num_genders, num_occupations, num_zipcodes)
    

    Users: 943, genders: 2, occupations: 21, ZIP codes: 795

    print "Min rating: %d" % min_rating
    

    Min rating: 1

    print "Max rating: %d" % max_rating
    

    Max rating: 5

    print "Average rating: %2.2f" % mean_rating
    

    Average rating: 3.53

    print "Median rating: %d" % median_rating
    

    Median rating: 4

    print "Average # of ratings per user: %2.2f" % ratings_per_user
    

    Average # of ratings per user: 106.00

    print "Average # of ratings per movie: %2.2f" % ratings_per_movie
    

    Average # of ratings per movie: 59.00

    ratings.stats()
    

    (count: 100000, mean: 3.52986, stdev: 1.12566797076, max: 5, min: 1)

    2.2. 使用matplotlib的hist函数绘制直方图
    ages = user_fields.map(lambda x: int(x[1])).collect()
    hist(ages, bins=20, color='lightblue', normed=True)
    fig = matplotlib.pyplot.gcf()
    fig.set_size_inches(16, 10)
    

    3_2

    count_by_rating = ratings.countByValue()
    x_axis = np.array(count_by_rating.keys())
    y_axis = np.array([float(c) for c in count_by_rating.values()])
    # we normalize the y-axis here to percentages
    y_axis_normed = y_axis / y_axis.sum()
    
    pos = np.arange(len(x_axis))
    width = 1.0
    
    ax = plt.axes()
    ax.set_xticks(pos + (width / 2))
    ax.set_xticklabels(x_axis)
    
    plt.bar(pos, y_axis_normed, width, color='lightblue')
    plt.xticks(rotation=30)
    fig = matplotlib.pyplot.gcf()
    fig.set_size_inches(16, 10)
    

    3_5

    count_by_occupation = user_fields.map(lambda fields: (fields[3], 1)).reduceByKey(lambda x, y: x + y).collect()
    x_axis1 = np.array([c[0] for c in count_by_occupation])
    y_axis1 = np.array([c[1] for c in count_by_occupation])
    x_axis = x_axis1[np.argsort(y_axis1)]
    y_axis = y_axis1[np.argsort(y_axis1)]
    
    pos = np.arange(len(x_axis))
    width = 1.0
    
    ax = plt.axes()
    ax.set_xticks(pos + (width / 2))
    ax.set_xticklabels(x_axis)
    
    plt.bar(pos, y_axis, width, color='lightblue')
    plt.xticks(rotation=30)
    fig = matplotlib.pyplot.gcf()
    fig.set_size_inches(16, 10)
    

    3_3

    2.3. 使用countByValue函数统计
    count_by_occupation2 = user_fields.map(lambda fields: fields[3]).countByValue()
    print "Map-reduce approach:"
    print dict(count_by_occupation2)
    

    {u'administrator': 79, u'retired': 14, u'lawyer': 12, u'healthcare': 16, u'marketing': 26, u'executive': 32, u'scientist': 31, u'student': 196, u'technician': 27, u'librarian': 51, u'programmer': 66, u'salesman': 12, u'homemaker': 7, u'engineer': 67, u'none': 9, u'doctor': 7, u'writer': 45, u'entertainment': 18, u'other': 105, u'educator': 95, u'artist': 28}

    print ""
    print "countByValue approach:"
    print dict(count_by_occupation)
    

    {u'administrator': 79, u'writer': 45, u'retired': 14, u'lawyer': 12, u'doctor': 7, u'marketing': 26, u'executive': 32, u'none': 9, u'entertainment': 18, u'healthcare': 16, u'scientist': 31, u'student': 196, u'educator': 95, u'technician': 27, u'librarian': 51, u'programmer': 66, u'artist': 28, u'salesman': 12, u'other': 105, u'homemaker': 7, u'engineer': 67}

    2.4. 使用filter转换
    def convert_year(x):
        try:
            return int(x[-4:])
        except:
            return 1900
    
    years = movie_fields.map(lambda fields: fields[2]).map(lambda x: convert_year(x))
    years_filtered = years.filter(lambda x: x != 1900)
    movie_ages = years_filtered.map(lambda yr: 1998-yr).countByValue()
    values = movie_ages.values()
    bins = movie_ages.keys()
    hist(values, bins=bins, color='lightblue', normed=True)
    

    (array([ 0. , 0.07575758, 0.09090909, 0.09090909, 0.18181818,
    0.18181818, 0.04545455, 0.07575758, 0.07575758, 0.03030303,
    0. , 0.01515152, 0.01515152, 0.03030303, 0. ,
    0.03030303, 0. , 0. , 0. , 0. ,
    0. , 0. , 0.01515152, 0. , 0.01515152,
    0. , 0. , 0. , 0. , 0. ,
    0. , 0. , 0. , 0. , 0. ,
    0. , 0. , 0.01515152, 0. , 0. ,
    0. , 0. , 0. , 0. , 0. ,
    0. , 0. , 0. , 0. , 0. ,
    0. , 0. , 0. , 0. , 0. ,
    0. , 0. , 0. , 0. , 0. ,
    0. , 0. , 0. , 0. , 0. ,
    0.01515152, 0. , 0. , 0. , 0. ]),
    array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
    17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
    34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
    51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
    68, 72, 76]),
    )

    fig = matplotlib.pyplot.gcf()
    fig.set_size_inches(16,10)
    

    3_4

    2.5. 使用groupByKey分组
    # to compute the distribution of ratings per user, we first group the ratings by user id
    user_ratings_grouped = rating_data.map(lambda fields: (int(fields[0]), int(fields[2]))).groupByKey()
    # then, for each key (user id), we find the size of the set of ratings, which gives us the # ratings for that user
    user_ratings_byuser = user_ratings_grouped.map(lambda (k, v): (k, len(v)))
    user_ratings_byuser.take(5)
    

    [(2, 62), (4, 24), (6, 211), (8, 59), (10, 184)]

    user_ratings_byuser_local = user_ratings_byuser.map(lambda (k, v): v).collect()
    hist(user_ratings_byuser_local, bins=200, color='lightblue', normed=True)
    
    fig = matplotlib.pyplot.gcf()
    fig.set_size_inches(16,10)
    

    3_6

    3. 处理转换

    3.1. 填充缺失
    years_pre_processed = movie_fields.map(lambda fields: fields[2]).map(lambda x: convert_year(x)).filter(lambda yr: yr != 1900).collect()
    years_pre_processed_array = np.array(years_pre_processed)
    # first we compute the mean and median year of release, without the 'bad' data point
    mean_year = np.mean(years_pre_processed_array[years_pre_processed_array!=1900])
    median_year = np.median(years_pre_processed_array[years_pre_processed_array!=1900])
    idx_bad_data = np.where(years_pre_processed_array==1900)[0]
    years_pre_processed_array[idx_bad_data] = median_year
    print "Mean year of release: %d" % mean_year
    

    Mean year of release: 1989

    print "Median year of release: %d" % median_year
    

    Median year of release: 1995

    print "Index of '1900' after assigning median: %s" % np.where(years_pre_processed_array == 1900)[0]
    

    Index of '1900' after assigning median: []

    4. 提取特征

    4.1. 类别特征(norminal变量/ordinal变量)
    all_occupations = user_fields.map(lambda fields: fields[3]).distinct().collect()
    all_occupations.sort()
    # create a new dictionary to hold the occupations, and assign the "1-of-k" indexes
    idx = 0
    all_occupations_dict = {}
    for o in all_occupations:
        all_occupations_dict[o] = idx
        idx +=1
    
    # try a few examples to see what "1-of-k" encoding is assigned
    print "Encoding of 'doctor': %d" % all_occupations_dict['doctor']
    print "Encoding of 'programmer': %d" % all_occupations_dict['programmer']
    

    Encoding of 'doctor': 2
    Encoding of 'programmer': 14

    numpy的zeros函数
    K = len(all_occupations_dict)
    binary_x = np.zeros(K)
    k_programmer = all_occupations_dict['programmer']
    binary_x[k_programmer] = 1
    print "Binary feature vector: %s" % binary_x
    print "Length of binary vector: %d" % K
    

    Binary feature vector: [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.

    1. 0. 0.] Length of binary vector: 21
    4.2. 派生特征
    时间戳转换为类别特征
    def extract_datetime(ts):
        import datetime
        return datetime.datetime.fromtimestamp(ts)
    
    def assign_tod(hr):
        times_of_day = {
            'morning' : range(7, 12),
            'lunch' : range(12, 15),
            'afternoon' : range(15, 18),
            'evening' : range(18, 23),
            'night' : {23,24,0,1,2,3,4,5,6,7}
        }
        for k, v in times_of_day.iteritems():
            if hr in v:
                return k
    
    timestamps = rating_data.map(lambda fields: int(fields[3]))
    hour_of_day = timestamps.map(lambda ts: extract_datetime(ts).hour)
    # now apply the "time of day" function to the "hour of day" RDD
    time_of_day = hour_of_day.map(lambda hr: assign_tod(hr))
    timestamps.take(5)
    

    [881250949, 891717742, 878887116, 880606923, 886397596]

    hour_of_day.take(5)
    

    [23, 3, 15, 13, 13]

    time_of_day.take(5)
    

    ['night', 'night', 'afternoon', 'lunch', 'lunch']

    4.3. 文本特征
    def extract_title(raw):
        import re
        grps = re.search("((w+))", raw)
        if grps:
            return raw[:grps.start()].strip()
        else:
            return raw
    
    raw_titles = movie_fields.map(lambda fields: fields[1])
    for raw_title in raw_titles.take(5):
        print extract_title(raw_title)
    
    

    Toy Story
    GoldenEye
    Four Rooms
    Get Shorty
    Copycat

    movie_titles = raw_titles.map(lambda m: extract_title(m))
    # next we tokenize the titles into terms. We'll use simple whitespace tokenization
    title_terms = movie_titles.map(lambda t: t.split(" "))
    print title_terms.take(5)
    

    [[u'Toy', u'Story'], [u'GoldenEye'], [u'Four', u'Rooms'], [u'Get', u'Shorty'], [u'Copycat']]

    flatMap
    all_terms = title_terms.flatMap(lambda x: x).distinct().collect()
    # create a new dictionary to hold the terms, and assign the "1-of-k" indexes
    idx = 0
    all_terms_dict = {}
    for term in all_terms:
        all_terms_dict[term] = idx
        idx +=1
    
    num_terms = len(all_terms_dict)
    print "Total number of terms: %d" % num_terms
    

    Total number of terms: 2645

    print "Index of term 'Dead': %d" % all_terms_dict['Dead']
    

    Index of term 'Dead': 147

    print "Index of term 'Rooms': %d" % all_terms_dict['Rooms']
    

    Index of term 'Rooms': 1963

    zipWithIndex
    all_terms_dict2 = title_terms.flatMap(lambda x: x).distinct().zipWithIndex().collectAsMap()
    print "Index of term 'Dead': %d" % all_terms_dict2['Dead']
    print "Index of term 'Rooms': %d" % all_terms_dict2['Rooms']
    

    Index of term 'Dead': 147
    Index of term 'Rooms': 1963

    创建稀疏向量/广播变量

    scipy depends $PYTHONPATH

    def create_vector(terms, term_dict):
        from scipy import sparse as sp
        x = sp.csc_matrix((1, num_terms))
        for t in terms:
            if t in term_dict:
                idx = term_dict[t]
                x[0, idx] = 1
        return x
    
    all_terms_bcast = sc.broadcast(all_terms_dict)
    term_vectors = title_terms.map(lambda terms: create_vector(terms, all_terms_bcast.value))
    term_vectors.take(5)
    

    [<1x2645 sparse matrix of type ''
    with 1 stored elements in Compressed Sparse Column format>,
    <1x2645 sparse matrix of type ''
    with 1 stored elements in Compressed Sparse Column format>,
    <1x2645 sparse matrix of type ''
    with 1 stored elements in Compressed Sparse Column format>,
    <1x2645 sparse matrix of type ''
    with 1 stored elements in Compressed Sparse Column format>,
    <1x2645 sparse matrix of type ''
    with 1 stored elements in Compressed Sparse Column format>]

    4.4. 正则化特征
    np.random.seed(42)
    x = np.random.randn(10)
    norm_x_2 = np.linalg.norm(x)
    normalized_x = x / norm_x_2
    print "x:
    %s" % x
    print "2-Norm of x: %2.4f" % norm_x_2
    print "Normalized x:
    %s" % normalized_x
    print "2-Norm of normalized_x: %2.4f" % np.linalg.norm(normalized_x)
    

    x:
    [ 0.49671415 -0.1382643 0.64768854 1.52302986 -0.23415337 -0.23413696
    1.57921282 0.76743473 -0.46947439 0.54256004]
    2-Norm of x: 2.5908
    Normalized x:
    [ 0.19172213 -0.05336737 0.24999534 0.58786029 -0.09037871 -0.09037237
    0.60954584 0.29621508 -0.1812081 0.20941776]
    2-Norm of normalized_x: 1.0000

    from pyspark.mllib.feature import Normalizer
    normalizer = Normalizer()
    vector = sc.parallelize([x])
    normalized_x_mllib = normalizer.transform(vector).first().toArray()
    
    print "x:
    %s" % x
    print "2-Norm of x: %2.4f" % norm_x_2
    print "Normalized x MLlib:
    %s" % normalized_x_mllib
    print "2-Norm of normalized_x_mllib: %2.4f" % np.linalg.norm(normalized_x_mllib)
    

    x:
    [ 0.49671415 -0.1382643 0.64768854 1.52302986 -0.23415337 -0.23413696
    1.57921282 0.76743473 -0.46947439 0.54256004]
    2-Norm of x: 2.5908
    Normalized x MLlib:
    [ 0.19172213 -0.05336737 0.24999534 0.58786029 -0.09037871 -0.09037237
    0.60954584 0.29621508 -0.1812.20941776]
    2-Norm of normalized_x_mllib: 1.0000

  • 相关阅读:
    网络与通信面试
    拥塞控制
    POSIX
    操作系统面试
    为什么大家都用变量"i"?
    shape与sprite和movieclip的区别
    AS3之麦克风接口【flash.media.Microphone 类】
    Flex 入门之垃圾回收机理
    Flash Player重绘
    时间效率,Timer和EnterFrame在FP 10.1之后测试和建议
  • 原文地址:https://www.cnblogs.com/tychyg/p/5320915.html
Copyright © 2020-2023  润新知