黄文坚的tensorflow实战一书中的第四章,讲述了tensorflow实现多层感知机。Hiton早年提出过自编码器的非监督学习算法,书中的代码给出了一个隐藏层的神经网络,本人扩展到了多层,改进了代码。实现多层神经网络时,把每层封装成一个NetLayer对象(本质是单向链表),然后计算隐藏层输出值的时候,运用递归算法,最后定义外层管理类。main函数里面,寻找出一个最优的模型出来。代码如下:
# encoding:utf-8 # selfEncodingWithTF.py import numpy as np import tensorflow as tf import sklearn.preprocessing as prep from tensorflow.examples.tutorials.mnist import input_data ''' tensorflow实现自编码器,非监督学习 @author XueQiang Tong ''' ''' xavier初始化器,把权重初始化在low和high范围内(满足N(0,2/Nin+Nout)) ''' def xavier_init(fan_in,fan_out,constant = 1): low = -constant * np.sqrt(6.0 / (fan_in + fan_out)) high = constant * np.sqrt(6.0 / (fan_in + fan_out)) return tf.random_uniform((fan_in,fan_out),minval=low ,maxval=high ,dtype=tf.float32) '''数据零均值,特征方差归一化处理''' def standard_scale(X_train,X_validation,X_test): preprocessor = prep.StandardScaler().fit(X_train) X_train = preprocessor.transform(X_train) X_validation = preprocessor.transform(X_validation) X_test = preprocessor.transform(X_test) return X_train,X_validation,X_test '''获取批量文本的策略''' def get_random_block_from_data(data,batch_size): start_index = np.random.randint(0,len(data) - batch_size) return data[start_index:(start_index + batch_size)] '''定义的hidden层,数据结构本质是链表,其中n_node:本层节点数,n_input为输入节点数目''' class NetLayer: def __init__(self,n_node,n_input): self.n_node = n_node self.n_input = n_input self.next_layer = None '''初始化权重''' def _initialize_weights(self): weights = dict() if self.next_layer == None:#如果是最后一层,由于只聚合不激活,全部初始化为0 weights['w'] = tf.Variable(tf.zeros([self.n_input, self.n_node], dtype=tf.float32)) weights['b'] = tf.Variable(tf.zeros([self.n_node], dtype=tf.float32)) else: weights['w'] = tf.Variable(xavier_init(self.n_input, self.n_node)) weights['b'] = tf.Variable(tf.zeros([self.n_node], dtype=tf.float32)) self.weights = weights return self.weights '''递归计算各层的输出值,返回最后一层的输出值''' def cal_output(self,transfer,index,X,scale): if index == 0: self.output = transfer(tf.add(tf.matmul(X + scale * tf.random_normal([self.n_input]),self.weights['w']),self.weights['b'])) else: if self.next_layer is not None: self.output = transfer(tf.add(tf.matmul(X,self.weights['w']),self.weights['b'])) else:self.output = tf.add(tf.matmul(X,self.weights['w']),self.weights['b']) if self.next_layer is not None: return self.next_layer.cal_output(transfer,++index,self.output,scale) return self.output def get_weights(self): return self.weights['w'] def get_bias(self): return self.weights['b'] '''定义的外层管理类''' class AdditiveGaussianNoiseAutoencoder(object): def __init__(self,layers=[],transfer_function=tf.nn.softplus,optimizer=tf.train.AdamOptimizer(),scale=0.1): self.layers = [] self.training_scale = scale self.scale = tf.placeholder(tf.float32) self.construct_network(layers) self._initialize_weights(self.layers) self.x = tf.placeholder(tf.float32,[None,layers[0]]) self.reconstruction = self.layers[0].cal_output(transfer_function,0,self.x,scale) self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction,self.x),2.0)) self.optimizer = optimizer.minimize(self.cost) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) '''初始化各层并构建各层的关联''' def construct_network(self,layers): last_layer = None for i,layer in enumerate(layers): if i == 0: continue cur_layer = NetLayer(layer,layers[i-1]) self.layers.append(cur_layer) if last_layer is not None: last_layer.next_layer = cur_layer last_layer = cur_layer '''外层调用初始化权重''' def _initialize_weights(self,layers): for i,layer in enumerate(layers): layer._initialize_weights() '''训练参数,并且返回损失函数节点的值''' def partial_fit(self,X): cost,opt = self.sess.run((self.cost,self.optimizer), feed_dict={self.x:X,self.scale:self.training_scale}) return cost '''运行cost节点''' def calc_total_cost(self,X): return self.sess.run(self.cost,feed_dict={self.x:X,self.scale:self.training_scale}) '''运行reconstruction节点''' def reconstruct(self,X): return self.sess.run(self.reconstruction,feed_dict={self.x:X,self.scale:self.training_scale}) def fit(self,X_train,training_epochs,n_samples,batch_size): for epoch in range(training_epochs): avg_cost = 0. total_batch = int(n_samples / batch_size) for i in range(total_batch): batch_xs = get_random_block_from_data(X_train, batch_size) cost = self.partial_fit(batch_xs) avg_cost += cost / n_samples * batch_size if epoch % display_step == 0: print("Epoch:", "%04d" % (epoch + 1), "cost=", "{:.9f}".format(avg_cost)) if __name__ == '__main__': mnist = input_data.read_data_sets("E:\Python35\Lib\site-packages\tensorflow\examples\tutorials\mnist\MNIST_data",one_hot=True) X_train,X_validation,X_test = standard_scale(mnist.train.images,mnist.validation.images,mnist.test.images) #得到训练样本和测试样本 n_samples = int(mnist.train.num_examples) #获取样本总数 training_epochs = [20,40,60] #迭代次数 list_layers = [[784,500,200,784],[784,200,200,784],[784,300,200,784]] batch_size = 128 #批次 display_step = 1 #每隔一步显示损失函数 mincost = (1 << 31) - 1. bestIter = 0 best_layers = [] bestModel = None '''训练出最优模型''' for epoch in training_epochs: for layers in list_layers: autoencoder = AdditiveGaussianNoiseAutoencoder(layers,transfer_function=tf.nn.softplus, optimizer= tf.train.AdamOptimizer(learning_rate=0.001), scale=0.01) autoencoder.fit(X_train,training_epochs,n_samples,batch_size) cost = autoencoder.calc_total_cost(X_validation) if cost < mincost: mincost = cost bestModel = autoencoder bestIter = epoch best_layers = layers '''训练完毕后,用测试样本验证一下cost''' print("Total cost: " + str(bestModel.calc_total_cost(X_test)))