• 特征选择和特征提取


    学习机器学习有一段时间了,却连这个最基本的理论问题都没弄懂,这里我简单的阐述一下。

    比如这里我有L个度量值集合{X1, X2, X3, ... XL};

    特征选择:从已有的L个度量值中按照一定的标准选择m(m<L)个子集,{X1, X2, X3,... Xm};这m个度量值就是作为降维后的特征。

    特征提取:使这L个度量值通过某种变换H(*), 产生新的m(m<L)个子集,{X1, X2, X3,... Xm}。新的m个子集,就是进行特征提取后降维的特征。

    下面用一个通俗的例子进行说明:

    例:特征选择与特征提取的区别:对一个条形和圆进行识别。

                                                          image 

    解:[法1]
    ① 特征提取:测量三个结构特征
             (a) 周长 
             (b) 面积
             (c)两个互相垂直的内径比

    分析: (c)是具有分类能力的特征,故选(c),
    扔掉(a) 、 (b) 。

    [法2]:① 特征提取取:测量物体向两个坐标轴的投影
    值,则A、B各有2个值域区间。可以看出,两个物体的投影有重叠,                                                                                                直接使用投影值无法将两者区分开。

    ② 特征选择:将坐标系按逆时针方向做一旋转变化,或物体按顺时针方向变,并适当平移等。根据物体在                                                      轴上投影的坐标值的正负可区分两个物体。

    image

  • 相关阅读:
    软件测试分类与分级
    项目风险管理(Project Risk Management)
    软件测试基础
    【1】开关电源纹波的抑制
    EMC小知识
    【02】STM32:跑马灯配置
    【01】STM32:GPIO管脚模式设置
    【07】Java入门07:继承与抽象类
    【06】Java入门06:IO流-基础
    【05】Java入门05:Java集合
  • 原文地址:https://www.cnblogs.com/txg198955/p/4313331.html
Copyright © 2020-2023  润新知