• 汽车安全性评估


    #准备数据

    import sklearn
    import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt
    from sklearn.preprocessing import LabelEncoder
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import PolynomialFeatures

    %matplotlib inline
    plt.rcParams['font.sans-serif'] = ['SimHei']
    df = pd.read_csv('012-car.data',header=None)
    dataset = df.values
    # print(df.info())
    # print(df.head()) #6个特征,1个标签,都是object类型,需要编码
    encoder_list = [] #存放每一列的encoder #存放编码器
    # print(dataset)
    encoder_set = np.empty(dataset.shape)
    for i in range(len(dataset[1])):
    encoder = LabelEncoder()
    encoder_set[:,i] = encoder.fit_transform(dataset[:,i])
    encoder_list.append(encoder) #将编码器加入到
    # print(encoder_set.shape)
    #取出特征和标签并将fload转int类型
    datasetX = encoder_set[:,:-1].astype(int)
    datasetY = encoder_set[:,-1].astype(int)
    train_X,test_X,train_Y,test_Y = train_test_split(datasetX,datasetY,test_size=0.2,random_state=30)
    print(train_X.shape)

    # 构建模型

    #随机森林模型
    from sklearn.ensemble import RandomForestClassifier
    rf_regressor=RandomForestClassifier()
    rf_regressor=RandomForestClassifier(n_estimators=1000,max_depth=10,min_samples_split=10)
    rf_regressor.fit(train_X,train_Y) # 训练模型
    # 使用测试集来评价该回归模型
    predict_test_y=rf_regressor.predict(test_X)
    # print(predict_test_y)
    #精准率,精确率,召回率,F1
    from sklearn.model_selection import cross_val_score

    print('准确率:{}'.format(cross_val_score(rf_regressor,train_X,train_Y,scoring='accuracy',cv=6).mean()))
    print('精确率:{}'.format(cross_val_score(rf_regressor,train_X,train_Y,scoring='precision_weighted',cv=6).mean()))
    print('召回率:{}'.format(cross_val_score(rf_regressor,train_X,train_Y,scoring='recall_weighted',cv=6).mean()))
    print('f1:{}'.format(cross_val_score(rf_regressor,train_X,train_Y,scoring='f1_weighted',cv=6).mean()))


    from sklearn.metrics import classification_report
    print(classification_report(y_pred=predict_test_y,y_true=test_Y))
    #support:原数据类别个数

    # 混合化矩阵

    from matplotlib import pyplot as plt
    %matplotlib inline
    import numpy as np
    import itertools

    from sklearn.metrics import confusion_matrix

    con_matrix = confusion_matrix(y_pred=predict_test_y,y_true=test_Y)
    # print(y_pre.shape)
    # print(dataset_y.shape)
    print(con_matrix) #查看混淆矩阵
    # 可视化混淆矩阵
    def plot_confusion_matrix(confusion_mat):

    plt.imshow(confusion_mat, interpolation='nearest', cmap=plt.cm.Blues)
    plt.title('Confusion matrix')
    plt.colorbar()
    tick_marks = np.arange(confusion_mat.shape[0])
    plt.xticks(tick_marks, tick_marks)
    plt.yticks(tick_marks, tick_marks)
    thresh = confusion_mat.max() / 2.
    for i, j in itertools.product(range(confusion_mat.shape[0]), range(confusion_mat.shape[1])):
    plt.text(j, i, confusion_mat[i, j],
    horizontalalignment="center",
    color="white" if confusion_mat[i, j] > thresh else "black")
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show()


    plot_confusion_matrix(con_matrix)

    #构造数据
    new_data = ['low','high','5more','4','big','high']
    data_result = np.empty(np.array(new_data).shape)
    # print(data_result)
    for i,value in enumerate(new_data):
    data_result[i] = encoder_list[i].transform([value]) #注意,不要fit
    y_pre = rf_regressor.predict([data_result])
    #解码
    print(encoder_list[-1].inverse_transform(y_pre)) #解码也用原数据

    # 模型调优

    # 参数组合:验证曲线

    #训集合大小:学习曲线

    #模型调优,验证曲线
    from sklearn.model_selection import validation_curve
    vc_classifer = RandomForestClassifier(n_estimators=140,max_depth=10,random_state=9)
    #生成一组参数列表
    param_grid = np.linspace(start=100,stop=400,num=20).astype(int)
    # print(param_grid)
    #获取训练得分和验证得分
    train_score,validation_score = validation_curve(vc_classifer,train_X,train_Y,'n_estimators',param_grid,cv=6)
    print(train_score)
    print(validation_score)

    # 定义一个绘图函数,绘制train scores 和valid scores
    def plot_valid_curve(grid_arr,train_scores,valid_scores,
    title=None,x_label=None,y_label=None):
    '''plot train_scores and valid_scores into a line graph'''
    assert train_scores.shape==valid_scores.shape,
    'expect train_scores and valid_scores have same shape'
    assert grid_arr.shape[0]==train_scores.shape[0],
    'expect grid_arr has the same first dim with train_scores'
    plt.figure()
    plt.plot(grid_arr, 100*np.average(train_scores, axis=1),
    color='blue',marker='v',label='train_scores')
    plt.plot(grid_arr, 100*np.average(valid_scores, axis=1),
    color='red',marker='s',label='valid_scores')
    plt.title(title) if title is not None else None
    plt.xlabel(x_label) if x_label is not None else None
    plt.ylabel(y_label) if y_label is not None else None
    plt.legend()
    plt.show()

    #调用函数
    plot_valid_curve(param_grid,train_score,validation_score,'验证曲线','n_estimators值','准确率')

    #学习曲线
    from sklearn.model_selection import learning_curve
    lc_classifer = RandomForestClassifier(n_estimators=140,max_depth=10,random_state=9)
    param_spilit = np.linspace(start=0.1,stop=0.9,num=10)
    print(param_spilit)
    train_sizes,train_score,validation_score = learning_curve(lc_classifer,datasetX,datasetY,train_sizes=param_spilit,cv=6)
    plot_valid_curve(param_spilit,train_score,validation_score,'学习曲线','训练集大小','模型得分')

    # 最终模型

    train_X,test_X,train_Y,test_Y = train_test_split(datasetX,datasetY,test_size=0.45,random_state=30)
    lasthear = RandomForestClassifier(n_estimators=140,max_depth=10,min_samples_split=10)
    lasthear.fit(train_X,train_Y)
    from sklearn.model_selection import cross_val_score

    print('准确率:{}'.format(cross_val_score(lasthear,train_X,train_Y,scoring='accuracy',cv=6).mean()))
    print('精确率:{}'.format(cross_val_score(lasthear,train_X,train_Y,scoring='precision_weighted',cv=6).mean()))
    print('召回率:{}'.format(cross_val_score(lasthear,train_X,train_Y,scoring='recall_weighted',cv=6).mean()))
    print('f1:{}'.format(cross_val_score(lasthear,train_X,train_Y,scoring='f1_weighted',cv=6).mean()))

  • 相关阅读:
    打开模拟器genymotion 的设置 查询设置的包名
    python 地板除 向下取整 取比目标结果小的的最大整数
    python 复数
    python 0.1+0.2 不等于0.3 的处理办法
    python 利用随机数的种子,复现随机数
    小程序 单独页面的js文件里设置 数据绑定
    问题集
    2020软件工程个人作业06——软件工程实践总结作业
    2020软件工程作业05
    2020软件工程作业04
  • 原文地址:https://www.cnblogs.com/txb1999/p/10738546.html
Copyright © 2020-2023  润新知