• 一份中外结合的 Machine Learning 自学计划


    看了Siraj Raval的3个月学习机器学习计划的视频,感觉非常好,地址:https://www.youtube.com/watch?v=Cr6VqTRO1v0 结合一些我们学习中的经验得出一份Hybrid的机器学习自学计划。

    根据Siraj的建议:机器学习的涉及的知识比例分布的

    1. 35%线性代数
    2. 25%概率论和统计学
    3. 15%微积分
    4. 15%算法及其复杂性
    5. 10%是数据预处理知识

    强烈建议订阅:Siraj Raval 的youtube

    看他的视频非常舒服,一种非常独特的学习方式而且和有用,地址是:https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A

    reddit这个网站大家可能不太熟悉,但是它已经全美流量排名第四,仅次于Google,YouTube和Facebook,上面内容质量很高,非常专注,下面这个地址是机器学习的subreddit:https://www.reddit.com/r/MachineLearning/

    第一个月:数学

    线性代数:

    看Gillbert Strang教授的教程足够了:https://www.youtube.com/playlist?list=PL49CF3715CB9EF31D 为什么不推荐中国大学的数学课程呢,其实网易公开课上有跟大学里线性代数课程基本一致需要虽然是中文但是学习起来还是有难度的,没什么互动,如果是为了考试那还好。Gillbert Strang教授讲的更多是思考方式以及原理和各种形象的比喻,这种方式更适合我们在职学习,加强理解和思考。 注意:一定做笔记,不能只是听或者看,一定要做笔记,记录要点,疑问,自己的想法等等,这个非常重要,是决定你能否学习好的关键。昨天看到了一位名叫Tess Ferrandez的小姐姐在推特上分享了一套自己的吴恩达老师的课程笔记,再看看我自己以前的笔记,真是非常害羞,世界上最难受的事情就是比你厉害比你努力的人做的笔记颜值也比你高,地址在这里:https://www.slideshare.net/TessFerrandez/notes-from-coursera-deep-learning-courses-by-andrew-ng 附上一张图片,大家看看:

    微积分:

    3Blue1Brown的微积分的本质,老师当时就是看这个视频理解微积分的,老师笨,看了8遍左右吧,个别的视频看了15遍以上,没毛病是真实情况,因为每一段视频并不长,适合反复看,同时也能提高英语能力。 https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr

    概率和统计:

    edX(麻省理工和哈佛大学联手创建的开放在线课堂平台)有一门很好的课程叫做“科学的不确定性” https://www.edx.org/course/introduction-probability-science-mitx-6-041x-2

    第二个月:机器学习

    这里我们按照Siraj的建议来 第一周学习:python,The Math of Intelligence,Tensorflow

    第二周:Udacity 上的机器学习课程

    第三四周:实践机器学习项目

    相关地址如下:

    python https://www.youtube.com/watch?v=T5pRlIbr6gg

    The Math of Intelligence https://www.youtube.com/watch?v=xRJCOz3AfYY

    Tensorflow https://www.youtube.com/watch?v=2FmcHiLCwTU

    Udacity https://eu.udacity.com/course/intro-to-machine-learning--ud120

    机器学习开源项目 https://github.com/NirantK/awesome-project-ideas

    第三个月深度学习

    深度学习要用到大量的计算,需要GPU,即使刚入门也需要,买一块NVIDIA Tesla k80的GPU的价格2500美金,好吧。但是非常幸运的是google为我们提供了一块免费的GPU可用:注册google的账号,登陆进去,访问:https://colab.research.google.com 然后尽情的使用了。 视频教程推荐看Siraj本人的:https://www.youtube.com/watch?v=vOppzHpvTiQ 另外一个全世界都说好的是Fast.AI的课程,http://course.fast.ai/ 最后呢附上一些深度学习的开源代码,也可以自己实现一下,传到自己的github上 https://github.com/llSourcell?tab=repositories

    总结

    介绍了一份机器学习的自学计划和相关资源,每天保证2个小时的专注学习时间,重点是多思考和找到解决问题的套路,不要把自己的大脑当作是固态硬盘来存数据,要把自己的大脑当作是CPU或者是GPU,是用来计算的。

    转载于:https://juejin.im/post/5ab20f88f265da238532be28

  • 相关阅读:
    thrift java first demo
    找工作的一些感悟——前端小菜的成长
    常见标签的默认属性值及相互作用——关于CSS reset的思考
    CSS清浮动处理(Clear与BFC)
    简单JavaScript模版引擎优化
    最简单的JavaScript模板引擎
    JavaScript正则表达式下——相关方法
    JavaScript 正则表达式上——基本语法
    node.js调试
    node.js module初步理解
  • 原文地址:https://www.cnblogs.com/twodog/p/12137296.html
Copyright © 2020-2023  润新知