-
通用: (PV = frac{M}{M_{mol}}Rt = u Rt)
- (M): 质量
- (M_{mol}): 1 mol物质的质量
- ( u): 几摩尔
-
求内能变化: ( riangle E = u C_V riangle t = ufrac{i}{2}R riangle t = frac{i}{2}(P_2 V_2 - P_1 V_1))
- (C_v): 等体摩尔热容
- (i): 分子自由度
- 单原子, (i=3)
- 双原子, (i=5)
- 多原子, (i=6)
-
比容热比: (gamma = frac{C_P}{C_V} = frac{2+i}{i})
-
( riangle v = 0, A = 0)
- ( riangle E = u C_V riangle t = ufrac{i}{2}R riangle t = frac{i}{2}(P_2 V_2 - P_1 V_1))
- (Q = riangle E)
-
( riangle p = 0)
- (A = P riangle v = u R riangle t)
- ( riangle E = u C_V riangle t = ufrac{i}{2}R riangle t = frac{i}{2}P riangle v)
- (Q = A + riangle E = u R riangle t + ufrac{i}{2}R riangle t = ufrac{2+i}{2}R riangle t = u C_P riangle t = frac{2+i}{2}P riangle v)
-
( riangle t = 0, riangle E = 0)
- (A = int_{v1}^{v2}PdV = int_{V_1}^{V_2}frac{ u RT}{v}dV = u RTint_{V_1}^{V_2}frac{dV}{v} = u RT(ln{V_2} - ln{V_1}) = u RT ln{frac{V_2}{V_1}} = u RT ln{frac{P_1}{P_2}} = P_1V_1 ln{frac{V_2}{V_1}} = P_2V_2 ln{frac{P_1}{P_2}})
- (Q = A)
-
(Q = 0)
- ( riangle E = u C_V riangle t = frac{i}{2}(P_2 V_2 - P_1 V_1))
- (A = Q - riangle E = - riangle E)
- (v^gamma p=c_1)
- (gamma ln{v} + ln{p} = ln{c_1})
- (int int frac{gamma}{v}dv + frac{1}{p}dp = ln{c_1})
- (frac{gamma}{v}dv + frac{1}{p}dp = 0)
- (gamma pdv + vdp = 0)
- (C_P = C_V + R)
- (gamma = frac{C_P}{C_V})
- ((C_V+R)pdv + C_Vvdp=0)
- (pdv +
u C_Vdt = 0)
- (dQ= dA + dE)
- (dA = pdv)
- (dE = u C_Vdt)
- (pdv + vdp =
u Rdt)
- (pv = u Rt)
- (pdv +
u C_Vdt = 0)
- (gamma pdv + vdp = 0)
- (frac{gamma}{v}dv + frac{1}{p}dp = 0)
- (int int frac{gamma}{v}dv + frac{1}{p}dp = ln{c_1})
- (gamma ln{v} + ln{p} = ln{c_1})
- (v^{gamma-1}t = c2)
- (v^{gamma - 1}
u Rt=c_1)
- (v^{gamma - 1}pv=c_1)
- (v^gamma p=c_1)
- (v^{gamma - 1}pv=c_1)
- (v^{gamma - 1}
u Rt=c_1)
- (t^{-gamma} p^{gamma-1} = c3)
- (tp^{frac{1-gamma}{gamma}}=frac{c_{1}^{frac{1}{gamma}}}{
u R})
- (tp^{frac{1}{gamma}-1}=frac{c_{1}^{frac{1}{gamma}}}{
u R})
- (frac{
u Rt}{p} p^{frac{1}{gamma}}=c_{1}^{frac{1}{gamma}})
- (v p^{frac{1}{gamma}}=c_{1}^{frac{1}{gamma}})
- (v^gamma p=c_1)
- (v p^{frac{1}{gamma}}=c_{1}^{frac{1}{gamma}})
- (frac{
u Rt}{p} p^{frac{1}{gamma}}=c_{1}^{frac{1}{gamma}})
- (tp^{frac{1}{gamma}-1}=frac{c_{1}^{frac{1}{gamma}}}{
u R})
- (tp^{frac{1-gamma}{gamma}}=frac{c_{1}^{frac{1}{gamma}}}{
u R})