• 2019杭电多校第九场


    2019杭电多校第九场

    熟悉的后半场挂机节奏,又苟进首页了,很快乐

    1001. Rikka with Quicksort

    upsolved

    不是我做的,1e9调和级数分段打表

    1002. Rikka with Cake

    solved at 01:11

    有一个矩形,给你很多射线(射线只有横平竖直的四个方向),问把矩形切成了多少块

    队友说答案是交点数加一,作为一个合格的工具人,当然是把队友的想法实现啦

    二维坐标离散化枚举纵坐标维护横坐标,常规套路,树状数组也可以做(我是线段树写习惯了根本没想起来还有树状数组)

    #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 1e5 + 10;
    
    struct P {
    	int x, y;
    	char op[3];
    }a[N];
    
    long long ans;
    int b[N], totx, toty;
    int T, n, m, K;
    vector<int> in[N], out[N], le[N], ri[N];
    int sum[N << 2];
    void pushup(int rt) {
    	sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
    }
    
    void build(int rt, int l, int r) {
    	if(l == r) {
    		sum[rt] = 0;
    		return;
    	}
    	int mid = l + r >> 1;
    	build(rt << 1, l, mid);
    	build(rt << 1 | 1, mid + 1, r);
    	pushup(rt);
    }
    
    void update(int rt, int l, int r, int pos, int val) {
    	if(l == r) {
    		sum[rt] += val;
    		return;
    	}
    	int mid = l + r >> 1;
    	if(pos <= mid) update(rt << 1, l, mid, pos, val);
    	else update(rt << 1 | 1, mid + 1, r, pos, val);
    	pushup(rt);
    }
    
    int query(int rt, int l, int r, int L, int R) {
    	if(L <= l && r <= R) 
    		return sum[rt];
    	int mid = l + r >> 1, ans = 0;
    	if(L <= mid) ans += query(rt << 1, l, mid, L, R);
    	if(R > mid) ans += query(rt << 1 | 1, mid + 1, r, L, R);
    	return ans;
    }
    
    int main() {
    	scanf("%d", &T);
    	while(T--) {
    		ans = 0;
    		scanf("%d%d%d", &n, &m, &K);
    		for(int i = 1; i <= K; ++i) {
    			scanf("%d%d%s", &a[i].x, &a[i].y, a[i].op);
    			b[i] = a[i].x;
    		}
    		sort(b + 1, b + K + 1);
    		totx = unique(b + 1, b + K + 1) - b - 1;
    		for(int i = 1; i <= K; ++i) 
    			a[i].x = lower_bound(b + 1, b + totx + 1, a[i].x) - b;
    		for(int i = 1; i <= K; ++i) 
    			b[i] = a[i].y;
    		sort(b + 1, b + K + 1);
    		toty = unique(b + 1, b + K + 1) - b - 1;
    		for(int i = 1; i <= K; ++i) 
    			a[i].y = lower_bound(b + 1, b + toty + 1, a[i].y) - b;
    		build(1, 1, totx);
    		for(int i = 1; i <= K; ++i) 
    			in[i].clear(), out[i].clear(), le[i].clear(), ri[i].clear();
    		for(int i = 1; i <= K; ++i) {
    			if(a[i].op[0] == 'U')
    				in[a[i].y].push_back(a[i].x);
    			else if(a[i].op[0] == 'D') {
    				out[a[i].y].push_back(a[i].x);
    				update(1, 1, totx, a[i].x, 1);
    			}
    			else if(a[i].op[0] == 'L') 
    				le[a[i].y].push_back(a[i].x);
    			else
    				ri[a[i].y].push_back(a[i].x);
    		}
    		for(int i = 1; i <= toty; ++i) {
    			for(auto f: in[i])
    				update(1, 1, totx, f, 1);
    			int l = 0, r = 1e9;
    			for(auto f: le[i])
    				l = max(l, f);
    			for(auto f: ri[i])
    				r = min(r, f);
    			if(l >= r) 
    				ans += sum[1];
    			else {
    				if(l != 0)
    					ans += query(1, 1, totx, 1, l);
    				if(r != 1e9)
    					ans += query(1, 1, totx, r, totx);
    			}
    			//cout << "ans = " << ans << endl;
    			for(auto f: out[i])
    				update(1, 1, totx, f, -1);
    		}
    		printf("%lld
    ", ans + 1);
    	}
    	return 0;
    }
    

    1003. Rikka with Mista

    upsolved

    至多40个数,对每一个子集求其所有数的和的十进制表示里(4)的个数,对所有子集求和

    先折半,然后按十进制位考虑,双指针查询(不用多次排序,只要在一次完整的基数排序的过程中计算就好了)

    #include <bits/stdc++.h>
    using namespace std;
    using LL = long long;
    
    struct num {
    	LL l, r;
    };
    
    LL ans, base;
    vector<num> x, y, A[10], B[10];
    int T, n, p, q, w[50];
    
    void dfs(int now, int step, LL tmp, vector<num> &x) {
    	if(now == step) {
    		x.push_back({tmp, 0});
    		return;
    	}
    	dfs(now + 1, step, tmp, x);
    	dfs(now + 1, step, tmp + w[now], x);
    }
    
    LL get0(vector<num> &A, vector<num> &B, LL limit) {
    	LL res = 0;
    	int j = B.size() - 1;
    	for(int i = 0; i < A.size(); ++i) {
    		while(j >= 0 && A[i].r + B[j].r >= limit) j--;
    		res += j + 1;
    	}
    	return res;
    }
    
    LL get1(vector<num> &A, vector<num> &B, LL limit) {
    	LL res = 0;
    	int j = 0;
    	for(int i = (int)A.size() - 1; ~i; --i) {
    		while(j < B.size() && A[i].r + B[j].r < limit) j++;
    		res += (int)B.size() - j;
    	}
    	return res;
    }
    
    int main() {
        scanf("%d", &T);
        while(T--) {
            ans = 0; base = 1;
            x.clear(); y.clear();
            scanf("%d", &n);
            for(int i = 0; i < n; ++i) 
                scanf("%d", &w[i]);
           	p = n / 2;
           	dfs(0, p, 0, x);
           	dfs(p, n, 0, y);
           	for(int bit = 1; bit <= 9; ++bit) {
           		for(int i = 0; i <= 9; ++i)
            		A[i].clear(), B[i].clear();
            	for(auto f: x) 
            		A[f.l % 10].push_back({f.l / 10, f.r});
            	for(auto f: y)
            		B[f.l % 10].push_back({f.l / 10, f.r});
            	for(int i = 0; i <= 9; ++i) {
            		int j1 = (14 - i) % 10, j2 = (13 - i) % 10;
            		ans += get0(A[i], B[j1], base) + get1(A[i], B[j2], base);
            	}
            	int nowx = 0, nowy = 0;
            	for(int i = 0; i <= 9; ++i) {
            		for(auto f: A[i])
            			x[nowx++] = (num){f.l, f.r + i * base};
            		for(auto f: B[i])
            			y[nowy++] = (num){f.l, f.r + i * base};
            	}
            	base *= 10;
           	}
            printf("%lld
    ", ans);
        }
        return 0;
    }
    
    

    1005. Rikka with Game

    solved at 00:16

    一个字符串,两个人轮流操作,每个人有两种操作,一是立即终止游戏,二是将一个位置的字符变成下一个字符((a->b, b->c, ..., z->a))

    第一个人想最小化字典序,第二个人想最大化字典序,求最后的字符串

    想一想,发现是不考虑前缀(y), 如果首个字母是(z)则变成(b),否则不变

    1006. Rikka with Coin

    solved at 00:51(+7)

    有10,20,50,100四种面额的硬币,有(n)种商品,每种价格已知,求最少的硬币数使得硬币面额能恰好组成任意一种商品

    设最贵的为(w),面额100的要么是(w/100)个要么少一个,前三种暴力枚举

    一开始max写成min了一直TLE...

    #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 110;
    
    int T, n, w[N];
    int ans, tmp;
    
    int vis[22];
    
    bool judge(int x, int y, int z, int d) {
    	memset(vis, 0, sizeof(vis));
    	vis[0] = 1;
    	for(int i = 1; i <= x; ++i) {
    		for(int j = 20; j >= 1; --j)
    			vis[j] |= vis[j - 1];
    	}
    	for(int i = 1; i <= y; ++i) {
    		for(int j = 20; j >= 2; --j)
    			vis[j] |= vis[j - 2];
    	}
    	for(int i = 1; i <= z; ++i) {
    		for(int j = 20; j >= 5; --j)
    			vis[j] |= vis[j - 5];
    	}
    	for(int i = 1; i <= n; ++i) {
    		bool flag = 0;
    		int t = w[i] % 10;
    		while(t <= 20) {
    			if(t + d * 10 >= w[i] && vis[t]) {flag = true; break;}
    			t += 10;
    		}
    		if(!flag) return false;
    	}
    	return true;
    }
    
    int main() {
    	scanf("%d", &T);
    	while(T--) {
    		bool flag = true;
    		scanf("%d", &n);
    		for(int i = 1; i <= n; ++i) {
    			scanf("%d", &w[i]);
    			if(w[i] % 10)
    				flag = false;
    			w[i] /= 10;
    		}
    		if(!flag) {
    			puts("-1");
    			continue;
    		}
    		sort(w + 1, w + n + 1);
    		tmp = w[n] / 10;
    		ans = 1e9;
    		for(int a = 0; a <= 10; ++a) {
    			for(int b = 0; b <= 5; ++b) {
    				for(int c = 0; c <= 2; ++c) {
    					for(int d = max(0, tmp - 1); d <= tmp; ++d) {
    						if(judge(a, b, c, d)) {
    							ans = min(ans, a + b + c + d);
    						}
    					}
    				}
    			}
    		}
    		printf("%d
    ", ans);
    	}
    	return 0;
    }
    

    1007. Rikka with Travel

    solved at 02:13

    给定一颗树,求满足存在一条点数为(i)的路径和一条点数为(j)的路径且两条路径不相交的点对((i, j))的数量((1<=n<=1e5))

    我又是个工具人

    树形dp

    枚举一条边把树切成两半,然后两边分别求直径,假设为a, b, 那么((1<=i<=a&&1<=j<=b))的点对都满足条件((i, j)可以互换)

    考虑两遍dfs, 第一遍处理出这个点的子树的直径,这个点往下延伸的最远的三个儿子以及长度,这个点的最大以及次大儿子直径

    第二遍dfs处理出挖掉这个点的子树之后树的直径,可以用之前处理出的信息维护出来

    #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 1e5 + 10;
    
    long long answer;
    int v[N];
    int T, n, x, y;
    vector<int> G[N];
    int mx[N][3], p[N][3], ans[N][2];
    int mxson[N][2], ps[N][2];
    
    void dfs(int rt, int fa) {
    	mx[rt][0] = 1; mx[rt][1] = -1e9; mx[rt][2] = -1e9;
    	p[rt][0] = rt; p[rt][1] = -1; mx[rt][2] = -1;
    	ans[rt][0] = 1;
    	mxson[rt][0] = mxson[rt][1] = -1e9;
    	ps[rt][0] = ps[rt][1] = -1;
    	for(int v: G[rt]) {
    		if(v == fa) continue;
    		dfs(v, rt);
    		if(mx[rt][2] < mx[v][0] + 1) {
    			mx[rt][2] = mx[v][0] + 1;
    			p[rt][2] = v;
    		}
    		if(mx[rt][2] > mx[rt][1]) {
    			swap(mx[rt][2], mx[rt][1]);
    			swap(p[rt][2], p[rt][1]);
    		}
    		if(mx[rt][1] > mx[rt][0]) {
    			swap(mx[rt][1], mx[rt][0]);
    			swap(p[rt][1], p[rt][0]);
    		}
    		if(ans[v][0] > mxson[rt][1]) {
    			mxson[rt][1] = ans[v][0];
    			ps[rt][1] = v;
    		}
    		if(mxson[rt][1] > mxson[rt][0]) {
    			swap(mxson[rt][1], mxson[rt][0]);
    			swap(ps[rt][1], ps[rt][0]);
    		}
    		ans[rt][0] = max(ans[rt][0], ans[v][0]);
    	}
    	ans[rt][0] = max(mx[rt][0] + mx[rt][1] - 1, ans[rt][0]);
    }
    
    void dfs2(int rt, int fa, int tmp, int len) {
    	ans[rt][1] = tmp;
    	for(int v: G[rt]) {
    		if(v == fa) continue;
    		int new_tmp = tmp;
    		int new_len = len + 1;
    		if(p[rt][0] != v) {
    			new_len = max(new_len, mx[rt][0]);
    		}
    		if(p[rt][1] != v) {
    			new_len = max(new_len, mx[rt][1]);
    		}
    		vector<int> vv;
    		vv.push_back(len + 1);
    		if(p[rt][0] != v)
    			vv.push_back(mx[rt][0]);
    		if(p[rt][1] != v)
    			vv.push_back(mx[rt][1]);
    		if(p[rt][2] != v)
    			vv.push_back(mx[rt][2]);
    		sort(vv.begin(), vv.end(), greater<int>());
    		new_tmp = max(new_tmp, vv[0] + vv[1] - 1);
    		if(ps[rt][0] != v)
    			new_tmp = max(new_tmp, mxson[rt][0]);
    		if(ps[rt][1] != v)
    			new_tmp = max(new_tmp, mxson[rt][1]);
    		dfs2(v, rt, new_tmp, new_len);
    	}
    }
    
    int main() {
    	scanf("%d", &T);
    	while(T--) {
    		answer = 0;
    		scanf("%d", &n);
    		for(int i = 1; i <= n; ++i) G[i].clear();
    		for(int i = 1; i < n; ++i) {
    			scanf("%d%d", &x, &y);
    			G[x].push_back(y);
    			G[y].push_back(x);
    		}
    		dfs(1, 0);
    		dfs2(1, 0, 0, 0);
    		memset(v, 0, sizeof(int) * (n + 3));
    		for(int i = 1; i <= n; ++i) {
    			int a = ans[i][0], b = ans[i][1];
    			v[a] = max(v[a], b);
    			v[b] = max(v[b], a);
    		}
    		for(int i = n; i; --i)
    			v[i] = max(v[i], v[i + 1]);
    		for(int i = 1; i <= n; ++i) {
    			answer += v[i];
    		}
    		printf("%lld
    ", answer);
    	}
    	return 0;
    }
    
  • 相关阅读:
    *Integer to English Words
    *Palindrome Linked List
    *Partition List
    Sort Colors
    wireshark tls
    find 路径必须在表达式之前
    http://mozilla.debian.net/
    maven bundle
    xmpp
    xmlns=""
  • 原文地址:https://www.cnblogs.com/tusikalanse/p/11385167.html
Copyright © 2020-2023  润新知