• UVa 1416


    题目链接:https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=0&problem=4162&mosmsg=Submission+received+with+ID+26583689

    题目要求所有点对间的最短路之和,因为是稀疏图,floyd 和 dijstra 差不多,如果枚举 m 条边每次求一遍答案,时间无法承受

    考虑最短路树,如果源点确定,那么只有修改在最短路树上的边,才会改变源点到其他点的最短距离,而这样的边只有 (n-1)

    所以枚举所有在最短路树上的边即可,要注意的细节就是因为是无向图,删边时要将反向边也删掉

    时间复杂度 (O(n^2mlogn))

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    
    const int maxn = 110;
    const int INF = 0x3f3f3f3f;
    
    int n, m, L;
    int u[1010], v[1010], w[1010];
    
    int h[maxn], cnt = 1;
    struct E{
    	int from, to, cost, next;
    }e[maxn * 10 * 2];
    void add(int u, int v, int w){
    	e[++cnt].to = v;
    	e[cnt].from = u;
    	e[cnt].cost = w;
    	e[cnt].next = h[u];
    	h[u] = cnt;
    }
    
    ll ans1, ans2[3010];
    int d[maxn], pre[maxn], vis[3010];
    void dij(int S, int ban){
    	memset(pre, 0, sizeof(pre));
    	memset(d, 0x3f, sizeof(d));
    	d[S] = 0;
    	priority_queue<pii, vector<pii>, greater<pii> > q;
    	q.push(pii(d[S], S));
    	
    	while(!q.empty()){
    		pii p = q.top(); q.pop();
    		int u = p.second;
    		if(p.first != d[u]) continue;
    		
    		for(int i = h[u] ; i != -1 ; i = e[i].next){
    			int v = e[i].to;
    			if(i == ban || i == (ban ^ 1)) continue;
    			if(d[v] > d[u] + e[i].cost){
    				pre[v] = i; 
    				d[v] = d[u] + e[i].cost;
    				q.push(pii(d[v], v));
    			}
    		}
    	}
    }
    
    void solve(int u){
    	int res1 = 0;
    	dij(u, -1); // 求出最短路树 
    	for(int i = 1 ; i <= n ; ++i){
    		ans1 += d[i] == INF ? L : d[i];	
    	}
    
    	for(int i = 1 ; i <= n ; ++i){ // 枚举删除哪条边 
    		if(!pre[i]) continue; 
    		vis[pre[i]] = 1; 
    	}
    }
    
    ll read(){ ll s = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9'){ if(ch == '-') f = -1; ch = getchar(); } while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); } return s * f; }
    
    int main(){
    	while(scanf("%d%d%d", &n, &m, &L) == 3){
    		ans1 = 0;
    		memset(ans2, 0, sizeof(ans2));
    		memset(vis, 0, sizeof(vis));
    		memset(h, -1, sizeof(h)); cnt = 1;
    		for(int i = 1 ; i <= m ; ++i){
    			scanf("%d%d%d", &u[i], &v[i], &w[i]);
    			add(u[i], v[i], w[i]); add(v[i], u[i], w[i]);
    		}
    		for(int i = 1 ; i <= n ; ++i){
    			solve(i);
    		}
    		
    		for(int i = 2 ; i <= cnt ; i += 2){
    			if(vis[i] || vis[i^1]){
    				for(int j = 1 ; j <= n ; ++j){
    					dij(j, i);
    					for(int k = 1 ; k <= n ; ++k){
    						ans2[i] += d[k] == INF ? L : d[k];
    					}
    				}
    			}
    		}
    		
    		ll res2 = 0;
    		for(int i = 1 ; i <= cnt ; ++i) res2 = max(res2, ans2[i]);
    		printf("%lld %lld
    ", ans1, res2);
    	}
    	return 0;
    }
    
  • 相关阅读:
    [moblie]safari 关闭上下文菜单和选区菜单
    [javascript] <完全开源,开心分享> HTML5 Canvas 在线图片处理《imageMagic》(single page app)开发详解[1]
    [nodejs]q&a
    [tool]webstorm 用firewatcher编译less
    前端截长屏功能
    切换路由默认回到顶部功能
    echarts 词云图和Map图兼容
    针对笔记本电脑系统默认缩放为150%导致页面放大解决方案
    关于专利的写作注意的要点(待续)
    Quartus中引脚的添加
  • 原文地址:https://www.cnblogs.com/tuchen/p/15026304.html
Copyright © 2020-2023  润新知