• Hadoop+HBase 集群搭建


    图片.png | center | 400x98.66666666666667

    1. 环境准备

    说明:本次集群搭建使用系统版本Centos 7.5 ,软件版本 V3.1.1。

    1.1 配置说明

    本次集群搭建共三台机器,具体说明下:

    主机名
    IP
    说明
    hadoop01
    10.0.0.10
    DataNode、NodeManager、NameNode
    hadoop02
    10.0.0.11
    DataNode、NodeManager、ResourceManager、SecondaryNameNode
    hadoop03
    10.0.0.12
    DataNode、NodeManager

    1.2 机器配置说明

    [clsn@hadoop01 /home/clsn]
    $cat  /etc/redhat-release
    CentOS Linux release 7.5.1804 (Core)
    
    [clsn@hadoop01 /home/clsn]
    $uname  -r
    3.10.0-862.el7.x86_64
    
    [clsn@hadoop01 /home/clsn]
    $sestatus
    SELinux status:                 disabled
    
    [clsn@hadoop01 /home/clsn]
    $systemctl  status  firewalld.service
    ● firewalld.service - firewalld - dynamic firewall daemon
       Loaded: loaded (/usr/lib/systemd/system/firewalld.service; disabled; vendor preset: enabled)
       Active: inactive (dead)
         Docs: man:firewalld(1)
    
    [clsn@hadoop01 /home/clsn]
    $id clsn
    uid=1000(clsn) gid=1000(clsn) 组=1000(clsn)
    
    [clsn@hadoop01 /home/clsn]
    $cat  /etc/hosts
    127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
    ::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
    10.0.0.10   hadoop01
    10.0.0.11   hadoop02
    10.0.0.12   hadoop03

    注:本集群内所有进程均由clsn用户启动

    1.3 ssh互信配置

    ssh-keygen
    ssh-copy-id -i ~/.ssh/id_rsa.pub  127.0.0.1
    scp -rp ~/.ssh hadoop02:/home/clsn
    scp -rp ~/.ssh hadoop03:/home/clsn

    1.4 配置jdk

    在三台机器上都需要操作

    tar xf jdk-8u191-linux-x64.tar.gz -C  /usr/local/
    ln -s /usr/local/jdk1.8.0_191 /usr/local/jdk
    sed -i.ori '$a export JAVA_HOME=/usr/local/jdk
    export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH
    export CLASSPATH=.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib:$JAVA_HOME/lib/tools.jar' /etc/profile
    . /etc/profile

    2. 安装hadoop

    2.1 安装包下载(Binary)

    wget http://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/hadoop-3.1.1/hadoop-3.1.1.tar.gz

    2.2 安装

    tar xf hadoop-3.1.1.tar.gz -C /usr/local/
    ln -s /usr/local/hadoop-3.1.1  /usr/local/hadoop
    sudo  chown  -R clsn.clsn /usr/local/hadoop-3.1.1/

    3.修改hadoop配置

    配置文件全部位于 /usr/local/hadoop/etc/hadoop 文件夹下

    3.1 hadoop-env.sh

    [clsn@hadoop01 /usr/local/hadoop/etc/hadoop]
    $ head hadoop-env.sh
    .  /etc/profile
    #
    # Licensed to the Apache Software Foundation (ASF) under one
    # or more contributor license agreements.  See the NOTICE file
    # distributed with this work for additional information
    # regarding copyright ownership.  The ASF licenses this file
    # to you under the Apache License, Version 2.0 (the
    # "License"); you may not use this file except in compliance
    # with the License.  You may obtain a copy of the License at

    3.2 core-site.xml

    [clsn@hadoop01 /usr/local/hadoop/etc/hadoop]
    $ cat core-site.xml
    <?xml version="1.0" encoding="UTF-8"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    
    <!-- Put site-specific property overrides in this file. -->
    
    <configuration>
        <!-- 指定HDFS老大(namenode)的通信地址 -->
        <property>
            <name>fs.defaultFS</name>
            <value>hdfs://hadoop01:9000</value>
        </property>
        <!-- 指定hadoop运行时产生文件的存储路径 -->
        <property>
            <name>hadoop.tmp.dir</name>
            <value>/data/tmp</value>
        </property>
    </configuration>

    3.3 hdfs-site.xml

    [clsn@hadoop01 /usr/local/hadoop/etc/hadoop]
    $ cat hdfs-site.xml
    <?xml version="1.0" encoding="UTF-8"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    
    <!-- Put site-specific property overrides in this file. -->
    
    <configuration>
        <!-- 设置namenode的http通讯地址 -->
        <property>
            <name>dfs.namenode.http-address</name>
            <value>hadoop01:50070</value>
        </property>
    
        <!-- 设置secondarynamenode的http通讯地址 -->
        <property>
            <name>dfs.namenode.secondary.http-address</name>
            <value>hadoop02:50090</value>
        </property>
    
        <!-- 设置namenode存放的路径 -->
        <property>
            <name>dfs.namenode.name.dir</name>
            <value>/data/name</value>
        </property>
    
        <!-- 设置hdfs副本数量 -->
        <property>
            <name>dfs.replication</name>
            <value>2</value>
        </property>
        <!-- 设置datanode存放的路径 -->
        <property>
            <name>dfs.datanode.data.dir</name>
            <value>/data/datanode</value>
        </property>
    
        <property>
            <name>dfs.permissions</name>
            <value>false</value>
        </property>
    
    </configuration>

    3.4 mapred-site.xml

    [clsn@hadoop01 /usr/local/hadoop/etc/hadoop]
    $ cat mapred-site.xml
    <?xml version="1.0"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    <!-- Put site-specific property overrides in this file. -->
    
    <configuration>
        <!-- 通知框架MR使用YARN -->
        <property>
            <name>mapreduce.framework.name</name>
            <value>yarn</value>
        </property>
        <property>
            <name>mapreduce.application.classpath</name>
            <value>
            /usr/local/hadoop/etc/hadoop,
            /usr/local/hadoop/share/hadoop/common/*,
            /usr/local/hadoop/share/hadoop/common/lib/*,
            /usr/local/hadoop/share/hadoop/hdfs/*,
            /usr/local/hadoop/share/hadoop/hdfs/lib/*,
            /usr/local/hadoop/share/hadoop/mapreduce/*,
            /usr/local/hadoop/share/hadoop/mapreduce/lib/*,
            /usr/local/hadoop/share/hadoop/yarn/*,
            /usr/local/hadoop/share/hadoop/yarn/lib/*
            </value>
        </property>
    
    </configuration>

    3.5 yarn-site.xml

    [clsn@hadoop01 /usr/local/hadoop/etc/hadoop]
    $ cat yarn-site.xml
    <?xml version="1.0"?>
    
    <configuration>
        <property>
            <name>yarn.resourcemanager.hostname</name>
            <value>hadoop02</value>
        </property>
    
        <property>
            <description>The http address of the RM web application.</description>
            <name>yarn.resourcemanager.webapp.address</name>
            <value>${yarn.resourcemanager.hostname}:8088</value>
        </property>
    
        <property>
            <description>The address of the applications manager interface in the RM.</description>
            <name>yarn.resourcemanager.address</name>
            <value>${yarn.resourcemanager.hostname}:8032</value>
        </property>
    
        <property>
            <description>The address of the scheduler interface.</description>
            <name>yarn.resourcemanager.scheduler.address</name>
            <value>${yarn.resourcemanager.hostname}:8030</value>
        </property>
    
        <property>
            <name>yarn.resourcemanager.resource-tracker.address</name>
            <value>${yarn.resourcemanager.hostname}:8031</value>
        </property>
    
        <property>
            <description>The address of the RM admin interface.</description>
            <name>yarn.resourcemanager.admin.address</name>
            <value>${yarn.resourcemanager.hostname}:8033</value>
        </property>
    
    </configuration>

    3.6 masters & slaves

    echo 'hadoop02' >> /usr/local/hadoop/etc/hadoop/masters
    echo 'hadoop03
    hadoop01'  >> /usr/local/hadoop/etc/hadoop/slaves

    3.7 启动脚本修改

    启动脚本文件全部位于 /usr/local/hadoop/sbin 文件夹下:
    (1)修改 start-dfs.sh stop-dfs.sh 文件添加:

    HDFS_DATANODE_USER=clsn
    HADOOP_SECURE_DN_USER=hdfs
    HDFS_NAMENODE_USER=clsn
    HDFS_SECONDARYNAMENODE_USER=clsn

    (2)修改start-yarn.sh 和 stop-yarn.sh文件添加:

    YARN_RESOURCEMANAGER_USER=clsn
    HADOOP_SECURE_DN_USER=yarn
    YARN_NODEMANAGER_USER=clsn

    4. 启动前准备

    4.1 创建文件目录

    mkdir -p /data/tmp
    mkdir -p /data/name
    mkdir -p /data/datanode
    chown -R clsn.clsn /data 

    在集群内所有机器上都进行创建,也可以复制文件夹

    for i in hadoop02 hadoop03
        do 
            sudo scp -rp /data $i:/
    done 

    4.2 复制hadoop配置到其他机器

    for i in hadoop02 hadoop03
        do 
            sudo scp -rp  /usr/local/hadoop-3.1.1 $i:/usr/local/
    done 

    4.3 启动hadoop集群

    (1)第一次启动前需要格式化

    /usr/local/hadoop/bin/hdfs namenode -format 

    (2)启动集群

    cd /usr/local/hadoop/sbin 
    ./start-all.sh

    5.集群启动成功

    (1)使用jps查看集群中各个角色,是否与预期相一致

    [clsn@hadoop01 /home/clsn]
    $ pssh  -ih  cluster  "`which jps`"
    [1] 11:30:31 [SUCCESS] hadoop03
    7947 DataNode
    8875 Jps
    8383 NodeManager
    [2] 11:30:31 [SUCCESS] hadoop01
    20193 DataNode
    20665 NodeManager
    21017 NameNode
    22206 Jps
    [3] 11:30:31 [SUCCESS] hadoop02
    8896 DataNode
    9427 NodeManager
    10883 Jps
    9304 ResourceManager
    10367 SecondaryNameNode

    (2)浏览器访问http://hadoop02:8088/cluster/nodes
    该页面为ResourceManager 管理界面,在上面可以看到集群中的三台Active Nodes。

    图片.png | center | 747x378
    (3) 浏览器访问http://hadoop01:50070/dfshealth.html#tab-datanode
    该页面为NameNode管理页面

    图片.png | center | 747x438

    6.Hbase配置

    image.png | center | 300x73.88059701492537

    6.1 部署Hbase包

    cd /opt/
    wget  http://mirrors.tuna.tsinghua.edu.cn/apache/hbase/1.4.9/hbase-1.4.9-bin.tar.gz
    tar xf  hbase-1.4.9-bin.tar.gz -C  /usr/local/
    ln -s /usr/local/hbase-1.4.9 /usr/local/hbase

    6.2 修改配置文件

    6.2.1 hbase-env.sh

    # 添加一行
    . /etc/profile

    6.2.2 hbase-site.xml

    [clsn@hadoop01 /usr/local/hbase/conf]
    $ cat  hbase-site.xml
    <?xml version="1.0"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    
    <configuration>
    <property>
    	<name>hbase.rootdir</name>
        <!-- hbase存放数据目录 -->
    	<value>hdfs://hadoop01:9000/hbase/hbase_db</value>
    	<!-- 端口要和Hadoop的fs.defaultFS端口一致-->
    </property>
    <property>
    	<name>hbase.cluster.distributed</name> 
        <!-- 是否分布式部署 -->
    	<value>true</value>
    </property>
    <property>
    	<name>hbase.zookeeper.quorum</name>
    	<!-- zookooper 服务启动的节点,只能为奇数个 -->
    	<value>hadoop01,hadoop02,hadoop03</value>
    </property>
    <property>
    	<!--zookooper配置、日志等的存储位置,必须为以存在 -->
    	<name>hbase.zookeeper.property.dataDir</name>
    	<value>/data/hbase/zookeeper</value>
    </property>
    <property>
    	<!--hbase web 端口 -->
    	<name>hbase.master.info.port</name>
    	<value>16610</value>
    </property>
    </configuration>

    注意:

    zookeeper有这样一个特性:
    集群中只要有过半的机器是正常工作的,那么整个集群对外就是可用的。
    也就是说如果有2个zookeeper,那么只要有1个死了zookeeper就不能用了,因为1没有过半,所以2个zookeeper的死亡容忍度为0;
    同理,要是有3个zookeeper,一个死了,还剩下2个正常的,过半了,所以3个zookeeper的容忍度为1;
    再多列举几个:2->0 ; 3->1 ; 4->1 ; 5->2 ; 6->2 会发现一个规律,2n和2n-1的容忍度是一样的,都是n-1,所以为了更加高效,何必增加那一个不必要的zookeeper

    6.2.3 regionservers

    [clsn@hadoop01 /usr/local/hbase/conf]
    $ cat regionservers
    hadoop01
    hadoop02
    hadoop03

    6.2.4 分发配置到其他节点

    for i in hadoop02 hadoop03
        do 
            sudo scp -rp  /usr/local/hbase-1.4.9 $i:/usr/local/
    done 

    6.3 启动hbase集群

    6.3.1 启动hbase

    [clsn@hadoop01 /usr/local/hbase/bin]
    $ sudo  ./start-hbase.sh
    hadoop03: running zookeeper, logging to /usr/local/hbase-1.4.9/bin/../logs/hbase-root-zookeeper-hadoop03.out
    hadoop02: running zookeeper, logging to /usr/local/hbase-1.4.9/bin/../logs/hbase-root-zookeeper-hadoop02.out
    hadoop01: running zookeeper, logging to /usr/local/hbase-1.4.9/bin/../logs/hbase-root-zookeeper-hadoop01.out
    running master, logging to /usr/local/hbase-1.4.9/bin/../logs/hbase-root-master-hadoop01.out
    hadoop02: running regionserver, logging to /usr/local/hbase-1.4.9/bin/../logs/hbase-root-regionserver-hadoop02.out
    hadoop03: running regionserver, logging to /usr/local/hbase-1.4.9/bin/../logs/hbase-root-regionserver-hadoop03.out
    hadoop01: running regionserver, logging to /usr/local/hbase-1.4.9/bin/../logs/hbase-root-regionserver-hadoop01.out

    访问 http://hadoop01:16610/master-status 查看hbase状态

    image.png | center | 747x445

    6.3.2 启动hbase 客户端

    [clsn@hadoop01 /usr/local/hbase/bin]
    $ ./hbase shell  #启动hbase客户端
    SLF4J: Class path contains multiple SLF4J bindings.
    SLF4J: Found binding in [jar:file:/usr/local/hbase-1.4.9/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: Found binding in [jar:file:/usr/local/hadoop-3.1.1/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
    SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
    HBase Shell
    Use "help" to get list of supported commands.
    Use "exit" to quit this interactive shell.
    Version 1.4.9, rd625b212e46d01cb17db9ac2e9e927fdb201afa1, Wed Dec  5 11:54:10 PST 2018
    
    hbase(main):001:0> create 'clsn','cf'   #创建一个clsn表,一个cf 列簇
    0 row(s) in 7.8790 seconds
    
    => Hbase::Table - clsn    
    
    hbase(main):003:0> list    #查看hbase 所有表
    TABLE
    clsn
    1 row(s) in 0.0860 seconds
    
    => ["clsn"]
    hbase(main):004:0> put 'clsn','1000000000','cf:name','clsn'    #put一条记录到表clsn,rowkey 为 1000000000,放到 name列上
    0 row(s) in 0.3390 seconds
    
    hbase(main):005:0> put 'clsn','1000000000','cf:sex','male'    #put一条记录到表clsn,rowkey 为 1000000000,放到sex列上
    0 row(s) in 0.0300 seconds
    
    hbase(main):006:0> put 'clsn','1000000000','cf:age','24'     #put一条记录到表clsn,rowkey 为 1000000000,放到age列上
    0 row(s) in 0.0290 seconds
    
    hbase(main):007:0> count  'clsn'     
    1 row(s) in 0.2100 seconds
    
    => 1
    hbase(main):008:0>  get 'clsn','cf'
    COLUMN                        CELL
    0 row(s) in 0.1050 seconds
    
    hbase(main):009:0> get 'clsn','1000000000'      #获取数据
    COLUMN                        CELL
     cf:age                       timestamp=1545710530665, value=24
     cf:name                      timestamp=1545710495871, value=clsn
     cf:sex                       timestamp=1545710509333, value=male
    1 row(s) in 0.0830 seconds
    
    hbase(main):010:0> list
    TABLE
    clsn
    1 row(s) in 0.0240 seconds
    
    => ["clsn"]
    hbase(main):011:0> drop  clsn
    NameError: undefined local variable or method `clsn' for #<Object:0x6f731759>
    
    hbase(main):012:0> drop  'clsn'
    
    ERROR: Table clsn is enabled. Disable it first.
    
    Here is some help for this command:
    Drop the named table. Table must first be disabled:
      hbase> drop 't1'
      hbase> drop 'ns1:t1'
    
    
    hbase(main):013:0> list
    TABLE
    clsn
    1 row(s) in 0.0330 seconds
    
    => ["clsn"]
    
    hbase(main):015:0> disable 'clsn'
    0 row(s) in 2.4710 seconds
    
    hbase(main):016:0> list
    TABLE
    clsn
    1 row(s) in 0.0210 seconds
    
    => ["clsn"]

    7. 参考文献

    https://hadoop.apache.org/releases.html
    https://my.oschina.net/orrin/blog/1816023
    https://www.yiibai.com/hadoop/
    http://blog.fens.me/hadoop-family-roadmap/
    http://www.cnblogs.com/Springmoon-venn/p/9054006.html
    https://github.com/googlehosts/hosts
    http://abloz.com/hbase/book.html

  • 相关阅读:
    PHP Mysql 根据一个给定经纬度的点,进行附近地点查询–算法 转载
    使用正则表达式匹配JS函数代码
    随便写点
    test
    Dat
    数据格式
    recod
    扫描
    转载 ASP.NET MVC中使用ASP.NET Identity
    制作32位和64位整合的安装包
  • 原文地址:https://www.cnblogs.com/tu240302975/p/13339541.html
Copyright © 2020-2023  润新知