• CentOS8下安装CUDA 10.2


    第一步:先安装好nvidia驱动

    第二步:打开终端,输入命令:nvcc --version,查看是否安装了cuda

    运行命令:nvidia-smi

    可以看到CUDA Version:10.2

    第三步:入官网下载cuda10.2版本,按下面选好后,会给出安装命令

    wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda-repo-rhel8-10-2-local-10.2.89-440.33.01-1.0-1.x86_64.rpm
    sudo rpm -i cuda-repo-rhel8-10-2-local-10.2.89-440.33.01-1.0-1.x86_64.rpm
    sudo dnf clean all
    sudo dnf -y module install nvidia-driver:latest-dkms
    sudo dnf -y install cuda

    第四步:打开~/.bashrc,加入配置信息
    [root@localhost ~]# vi ~/.bashrc

    export PATH=/usr/local/cuda/bin:$PATH
    export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

    更新~/.bashrc

    [root@localhost ~]# source ~/.bashrc

    重启后

    第五步:确认CUDA正确安装,运行命令

    $ nvcc --version
    $ nvidia-smi


    [root@localhost ~]# nvcc --version
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2019 NVIDIA Corporation
    Built on Wed_Oct_23_19:24:38_PDT_2019
    Cuda compilation tools, release 10.2, V10.2.89

    [root@localhost ~]# nvidia-smi
    Fri Jan 10 12:45:36 2020
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |
    |-------------------------------+----------------------+----------------------+
    | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
    | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
    |===============================+======================+======================|
    | 0 GeForce GTX 650 Off | 00000000:02:00.0 N/A | N/A |
    | 21% 24C P8 N/A / N/A | 79MiB / 979MiB | N/A Default |
    +-------------------------------+----------------------+----------------------+

    +-----------------------------------------------------------------------------+
    | Processes: GPU Memory |
    | GPU PID Type Process name Usage |
    |=============================================================================|
    | 0 Not Supported |
    +-----------------------------------------------------------------------------+

    第六步:测试CUDA程序

    # mkdir cuda-samples

    # cuda-install-samples-10.2.sh cuda-samples/

    # cd ./cuda-samples/NVIDIA_CUDA-10.2_Samples/0_Simple/clock/

    # make

    [root@localhost ~]# mkdir cuda-samples
    [root@localhost ~]# cuda-install-samples-10.2.sh cuda-samples/
    Copying samples to cuda-samples/NVIDIA_CUDA-10.2_Samples now...
    Finished copying samples.

    [root@localhost ~]# cd ./cuda-samples/NVIDIA_CUDA-10.2_Samples/0_Simple/clock/
    [root@localhost clock]# make

    /usr/local/cuda-10.2/bin/nvcc -ccbin g++ -I../../common/inc -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o clock.o -c clock.cu
    /usr/local/cuda-10.2/bin/nvcc -ccbin g++ -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o clock clock.o
    mkdir -p ../../bin/x86_64/linux/release
    cp clock ../../bin/x86_64/linux/release

  • 相关阅读:
    Laravel 集成 laravel Scout + Elasticsearch
    Vim Tab to Space and other configurations
    Gitlab To Gitlab 进行项目迁移
    win10 程序管理员权限读写文件和界面无法拖入的情况解决
    4.5 RNN循环神经网络(recurrent neural network)
    mumpy,h5py和tensorflow版本不匹配导致报错
    tensorflow预定义经典卷积神经网络和数据集tf.keras.applications
    QT失去focus后自动隐藏界面
    4.3CNN卷积神经网络最详细最容易理解--tensorflow源码MLP对比
    4.2tensorflow多层感知器MLP识别手写数字最易懂实例代码
  • 原文地址:https://www.cnblogs.com/ttrrpp/p/12175608.html
Copyright © 2020-2023  润新知