• 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:RNN-具有记忆功能的神经网络


    from keras.layers import SimpleRNN
    model = Sequential()
    model.add(embedding_layer)
    model.add(SimpleRNN(32))
    #当结果是输出多个分类的概率时,用softmax激活函数,它将为30个分类提供不同的可能性概率值
    model.add(layers.Dense(len(int_category), activation='softmax'))
    
    #对于输出多个分类结果,最好的损失函数是categorical_crossentropy
    model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
    history = model.fit(x_train, y_train, epochs=20, validation_data=(x_val, y_val), batch_size=512)

    acc = history.history['acc']
    val_acc = history.history['val_acc']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    epochs = range(1, len(acc) + 1)
    
    plt.title('Training and validation accuracy')
    plt.plot(epochs, acc, 'red', label='Training acc')
    plt.plot(epochs, val_acc, 'blue', label='Validation acc')
    plt.legend()
    plt.show()

  • 相关阅读:
    MySQL中tinytext、text、mediumtext和longtext详解
    端口冲突
    Form绑定
    Uri绑定
    只绑定Get参数
    Linux:Day4(上) 文件管理、管道
    selenium之frame
    selenium之选项卡管理
    Request
    爬虫常用库
  • 原文地址:https://www.cnblogs.com/tszr/p/12237905.html
Copyright © 2020-2023  润新知