• 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:卷积神经网络的底层原理


    def conv_(img, conv_filter):
        filter_size = conv_filter.shape[1]
        result = numpy.zeros((img.shape))
        print('loop r: ', numpy.uint16(numpy.arange(filter_size/2.0,img.shape[0]-filter_size/2.0+1)))
        #Looping through the image to apply the convolution operation.
        for r in numpy.uint16(numpy.arange(filter_size/2.0,img.shape[0]-filter_size/2.0+1)):
            for c in numpy.uint16(numpy.arange(filter_size/2.0,
                                               img.shape[1]-filter_size/2.0+1)):
               # Getting the current region to get multiplied with the filter.
                # How to loop through the image and get the region based on
                # the image and filer sizes is the most tricky part of convolution.
                curr_region = img[r-numpy.uint16(numpy.floor(filter_size/2.0)):r+numpy.uint16(numpy.ceil(filter_size/2.0)),
                                  c-numpy.uint16(numpy.floor(filter_size/2.0)):c+numpy.uint16(numpy.ceil(filter_size/2.0))]
                #Element-wise multiplication between the current region and the filter.
                curr_result = curr_region * conv_filter
                conv_sum = numpy.sum(curr_result) #Summing the result of multiplication.
                result[r, c] = conv_sum
                #Saving the summation in the convolution layer feature map.
                #Clipping the outliers of the result matrix.
        print('result: ', result)
        final_result = result[numpy.uint16(filter_size/2.0):result.shape[0]- numpy.uint16(filter_size/2.0),
                              numpy.uint16(filter_size/2.0):result.shape[1]- numpy.uint16(filter_size/2.0)]
        return final_result
      
    def  convolution(img, conv_filter):
      '''
      如果图片的规格为[img_height, img_width],过滤器规格为[filter_height, filter_width]
      那么在水平方向上横向移动过滤器进行卷积运算的次数为img_width - filter_width +1.
      在竖直方向上竖直移动过滤器进行卷积运算次数为image_hieght - filter_height + 1
      '''
      move_steps_vertical = img.shape[0] - conv_filter.shape[0] + 1
      move_steps_horizontal = img.shape[1] - conv_filter.shape[1] + 1
      
      result = numpy.zeros((move_steps_vertical, move_steps_horizontal))
     
      for vertical_index in range(move_steps_vertical):
        for horizontal_index in range(move_steps_horizontal):
          '''
          先从最顶端开始,选取3*3小块与过滤器进行卷积运算,然后在水平方向平移一个单位。
          当水平移动抵达最右边后,返回到最左边但是往下挪到一个单位,再重复上面步骤进行
          卷积运算
          '''
          region = img[vertical_index : vertical_index + conv_filter.shape[0],
                      horizontal_index : horizontal_index + conv_filter.shape[1]]
          
          #调试时可以反注释下面两条语句以理解代码逻辑
          #print('region index: ', vertical_index, horizontal_index)
          #print('current region: ', region)
          
          current_result = region * conv_filter
          conv_sum = np.sum(current_result)
          if conv_sum < 0:
            conv_sum = 0
          result[vertical_index, horizontal_index] = conv_sum
          
      return result 
          
          
    from google.colab import drive
    drive.mount('/content/gdrive')

    import numpy as np
    import numpy
    
    img = np.array([
        [10, 10, 10, 0, 0 ,0],
        [10, 10, 10, 0, 0 ,0],
        [10, 10, 10, 0, 0 ,0],
        [10, 10, 10, 0, 0 ,0],
        [10, 10, 10, 0, 0 ,0],
        [10, 10, 10, 0, 0 ,0],
    ])
    
    filter = np.array(
        [
            [1, 0, -1],
            [1, 0, -1],
            [1, 0, -1],
        ]
      
    )
    
    filter1 = np.array(
        [
            [1, 1, 1],
            [0, 0, 0],
            [-1, -1, -1],
        ]
      
    )
    
    conv_img = convolution(img, filter)
    print(conv_img)
    
    img = np.array([
        [10, 10, 10, 10, 10 ,10],
        [10, 0, 0, 0, 0 ,0],
        [10, 0, 0, 0, 0 ,0],
        [10, 10, 10, 0, 0 ,0],
        [10, 10, 10, 0, 0 ,0],
        [10, 10, 10, 0, 0 ,0],
    ])
    
    conv_img = convolution(img, filter1)
    print(conv_img)

    #加载图片,并将图片转换为像素点只包含一个数值的灰度图
    import  skimage.data
    
    image_path = '/content/gdrive/My Drive/dog.jpg'
    #加载图片同时将RGB图片转换为灰度图
    img = skimage.data.load(image_path, as_grey = True)
    
    import matplotlib
    from matplotlib import pyplot as plt
    plt.axis('off')
    plt.imshow(img)
    plt.show()

    #准备两个过滤器,每个过滤器的规格为(3,3)
    filters = np.array([
        [
            [-1, 0, 1],
            [-1, 0, 1],
            [-1, 0, 1]
        ],
        [
            [1, 1, 1],
            [0, 0, 0],
            [-1, -1, -1]
        ]
    ])
    
    def  convolution(img, conv_filter):
      '''
      如果图片的规格为[img_height, img_width],过滤器规格为[filter_height, filter_width]
      那么在水平方向上横向移动进行卷积运算的次数为img_width - filter_width +1.
      在竖直方向上竖直移动进行卷积运算次数为image_hieght - filter_height + 1
      '''
      move_steps_vertical = img.shape[0] - conv_filter.shape[0] + 1
      move_steps_horizontal = img.shape[1] - conv_filter.shape[1] + 1
      
      result = numpy.zeros((move_steps_vertical, move_steps_horizontal))
     
      for vertical_index in range(move_steps_vertical):
        for horizontal_index in range(move_steps_horizontal):
          '''
          先从最顶端开始,选取3*3小块与运算参数进行卷积运算,然后在水平方向平移一个单位。
          当水平移动抵达最右边后,返回到最左边但是往下挪到一个单位,再重复上面步骤进行
          卷积运算
          '''
          region = img[vertical_index : vertical_index + conv_filter.shape[0],
                      horizontal_index : horizontal_index + conv_filter.shape[1]]
          
           
          current_result = region * conv_filter
          conv_sum = np.sum(current_result)
          
          #注意这里去掉了conv_sum < 0判断,因为在后面的激活函数实现中会处理这个问题
          
          result[vertical_index, horizontal_index] = conv_sum
          
      return result 
    
    def  conv(img, conv_filter):
      '''
      #将过滤器依次作用到图像数组上
      '''
      #feature_map是运算参数作用到图片上后得到的结果
      feature_maps = np.zeros((img.shape[0] - conv_filter.shape[1] + 1 , 
                               img.shape[1] - conv_filter.shape[1] + 1,
                               conv_filter.shape[0]))
      for filter_num in range(conv_filter.shape[0]):
        curr_filter = conv_filter[filter_num, :]
        conv_map = convolution(img, curr_filter)
        feature_maps[:,:, filter_num] = conv_map
        
      return feature_maps
    
    image_path = '/content/gdrive/My Drive/dog.jpg'
    #加载图片同时将RGB图片转换为灰度图
    img = skimage.data.load(image_path, as_grey = True)
    #将两组运算参数作用到加载的灰度图上
    l1_feature_map = conv(img, filters)
    
    #显示第一组运算参数作用到图片上的结果,它抽取图片中物体的竖直边缘
    fig1, ax1 = matplotlib.pyplot.subplots(nrows=1, ncols=2)
    ax1[0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray")
    ax1[0].get_xaxis().set_ticks([])
    ax1[0].get_yaxis().set_ticks([])
    ax1[0].set_title("L1-Map1")
    
    #显示第二组运算参数作用到图片上的结果,它抽取图片中物体的水平边缘
    ax1[1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray")
    ax1[1].get_xaxis().set_ticks([])
    ax1[1].get_yaxis().set_ticks([])
    ax1[1].set_title("L1-Map2")

    '''
    模拟relu运算,它的逻辑简单,如果给定数值小于0,那就将它设置为0,如果大于0,那就保持不变
    '''
    def  relu(feature_map):
      relu_out = np.zeros(feature_map.shape)
      for map_num in range(feature_map.shape[-1]):
        for r in np.arange(0, feature_map.shape[0]):
          for c in np.arange(0, feature_map.shape[1]):
            relu_out[r, c, map_num] = np.max([feature_map[r, c, map_num], 0])
            
      return relu_out
    #显示第一幅图relu运算后的结果
    fig1, ax1 = matplotlib.pyplot.subplots(nrows=1, ncols=2)
    reluMap = relu(l1_feature_map)
    ax1[0].imshow(reluMap[:, :, 0]).set_cmap("gray")
    ax1[0].get_xaxis().set_ticks([])
    ax1[0].get_yaxis().set_ticks([])
    ax1[0].set_title("L1-MapRelu1")
    
    #显示第二幅图relu运算后结果的结果
    ax1[1].imshow(reluMap[:, :, 1]).set_cmap("gray")
    ax1[1].get_xaxis().set_ticks([])
    ax1[1].get_yaxis().set_ticks([])
    ax1[1].set_title("L1-MapRelu2")

    '''
    模拟MaxPooling操作实现数据压缩
    '''
    def  pooling(feature_map, size = 2, stride = 2):
      #size表示将上下左右4个元素进行比较,每次操作在水平和竖直方向上移动2个单位
      pool_out_height = np.uint16((feature_map.shape[0] - size + 1) / stride + 1) 
      pool_out_width = np.uint16((feature_map.shape[1] - size + 1) / stride + 1)
      
      pool_out = np.zeros((pool_out_height, pool_out_width, feature_map.shape[-1]))
      
      #现在水平方向上平移,每次间隔2个单位,然后在竖直方向平移,每次间隔2个单位
      for map_num in range(feature_map.shape[-1]):
        r2 = 0
        for r in np.arange(0, feature_map.shape[0] - size + 1, stride):
          c2 = 0
          for c in np.arange(0, feature_map.shape[1] - size + 1, stride):
            pool_out[r2, c2, map_num] = np.max([feature_map[r : r + size,
                                                           c: c + size,
                                                           map_num]])
            c2 = c2 + 1
            
          r2 = r2 + 1
          
      return  pool_out
    #显示第一幅图relu运算,再做max pooling结果
    fig1, ax1 = matplotlib.pyplot.subplots(nrows=1, ncols=2)
    poolingMap = pooling(reluMap)
    ax1[0].imshow(poolingMap[:, :, 0]).set_cmap("gray")
    ax1[0].get_xaxis().set_ticks([])
    ax1[0].get_yaxis().set_ticks([])
    ax1[0].set_title("L1-pooling1")
    
    #显示第二幅图relu运算后,再做max pooling结果的结果
    ax1[1].imshow(poolingMap[:, :, 1]).set_cmap("gray")
    ax1[1].get_xaxis().set_ticks([])
    ax1[1].get_yaxis().set_ticks([])
    ax1[1].set_title("L1-pooling2")

    filters2 = np.random.rand(2, 5, 5)
    print('adding conv layer 2')
    feature_map_2 = conv(poolingMap[:,:, 0], filters2)
    print('ReLU')
    relu_map_2 = relu(feature_map_2)
    print('max pooling')
    poolingMap_2 = pooling(relu_map_2)
    print('End of conv layer 2')

    #显示第二层卷积层运算后第一幅图
    fig1, ax1 = matplotlib.pyplot.subplots(nrows=1, ncols=2)
    
    ax1[0].imshow(poolingMap_2[:, :, 0]).set_cmap("gray")
    ax1[0].get_xaxis().set_ticks([])
    ax1[0].get_yaxis().set_ticks([])
    ax1[0].set_title("Layer 2, L1-pooling1")
    
    #显示第二层卷积层运算后第二幅图
    ax1[1].imshow(poolingMap_2[:, :, 1]).set_cmap("gray")
    ax1[1].get_xaxis().set_ticks([])
    ax1[1].get_yaxis().set_ticks([])
    ax1[1].set_title("Layer 2, L1-pooling2")

    filters3 = np.random.rand(2, 7, 7)
    print('adding conv layer 3')
    feature_map_3 = conv(poolingMap_2[:,:, 0], filters3)
    print('ReLU')
    relu_map_3 = relu(feature_map_3)
    print('max pooling')
    poolingMap_3 = pooling(relu_map_3)
    print('End of conv layer 3')

    #显示第三层卷积层运算后第一幅图
    fig1, ax1 = matplotlib.pyplot.subplots(nrows=1, ncols=2)
    
    ax1[0].imshow(poolingMap_3[:, :, 0]).set_cmap("gray")
    ax1[0].get_xaxis().set_ticks([])
    ax1[0].get_yaxis().set_ticks([])
    ax1[0].set_title("Layer 2, L1-pooling1")
    
    #显示第三层卷积层运算后第二幅图
    ax1[1].imshow(poolingMap_3[:, :, 1]).set_cmap("gray")
    ax1[1].get_xaxis().set_ticks([])
    ax1[1].get_yaxis().set_ticks([])
    ax1[1].set_title("Layer 2, L1-pooling2")

  • 相关阅读:
    php 导出csv文件
    dns 服务器配置
    ettercap ARP dns 欺骗
    for循环内 执行$ajax(){}
    js 如何生成二维数组
    jquery读取csv文件并用json格式输出
    echo 换行
    cmd命令运行php,php通过cmd运行文件
    Git 常用命令整理
    图像裁剪插件
  • 原文地址:https://www.cnblogs.com/tszr/p/12232664.html
Copyright © 2020-2023  润新知