• 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:使用神经网络预测房价中位数


    import pandas as pd
    data_path = '/Users/chenyi/Documents/housing.csv'
    housing = pd.read_csv(data_path)
    housing.info()

    housing.head()

    housing.describe()

    housing.hist(bins=50, figsize=(15,15))

     

     

    housing['ocean_proximity'].value_counts()

    import seaborn as sns
    total_count = housing['ocean_proximity'].value_counts()
    plt.figure(figsize=(10,5))
    sns.barplot(total_count.index, total_count.values, alpha=0.7)
    plt.title("Ocean Proximity Summary")
    plt.ylabel("Number of Occurences", fontsize=12)
    plt.xlabel("Ocean of Proximity", fontsize=12)
    plt.show()

    print(housing.shape)

    #将ocean_proximity转换为数值
    housing['ocean_proximity'] = housing['ocean_proximity'].astype('category')
    housing['ocean_proximity'] = housing['ocean_proximity'].cat.codes
    #将median_house_value分离出来最为被预测数据
    data = housing.values
    train_data = data[:, [0,1,2,3,4,5,6,7,9]]
    train_value = data[:,[8]]
    print(train_data[0])
    print(train_value[0])

    print(np.isnan(train_data).any())
    print(np.argwhere(np.isnan(train_data)))
    train_data[np.isnan(train_data)] = 0
    print(np.isnan(train_data).any())

    mean = train_data.mean(axis=0)
    train_data -= mean
    std = train_data.std(axis = 0)
    train_data /= std
    model = models.Sequential()
    model.add(layers.Dense(64, activation='relu', input_shape=(train_data.shape[1],)))
    model.add(layers.Dense(128, activation='relu'))
    model.add(layers.Dense(128, activation='relu'))
    model.add(layers.Dense(1))
    model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
    history = model.fit(train_data, train_value, epochs=300, 
                        validation_split=0.2, 
                        batch_size=32)

    val_mae_history = history.history['val_mean_absolute_error']
    plt.plot(range(1, len(val_mae_history) + 1), val_mae_history)
    plt.xlabel('Epochs')
    plt.ylabel('Validation MAE')
    plt.show()

    def smooth_curve(points, factor=0.9):
        smoothed_points = []
        for point in points:
            if smoothed_points:
                previous = smoothed_points[-1]
                smoothed_points.append(previous * factor + point * (1 - factor))
            else:
                smoothed_points.append(point)
        return smoothed_points
    
    smooth_mae_history = smooth_curve(val_mae_history)
    
    plt.plot(range(1, len(smooth_mae_history)+1), smooth_mae_history)
    plt.xlabel('Epochs')
    plt.ylabel('Validation MAE')
    plt.show()

    import matplotlib.pyplot as plt
    import matplotlib.ticker as plticker
    try:
        from PIL import Image
    except ImportError:
        import Image
    
    # Open image file
    image = Image.open('doggy.jpeg')
    my_dpi=300.
    
    # Set up figure
    fig=plt.figure(figsize=(float(image.size[0])/my_dpi,float(image.size[1])/my_dpi),dpi=my_dpi)
    ax=fig.add_subplot(111)
    
    # Remove whitespace from around the image
    fig.subplots_adjust(left=0,right=1,bottom=0,top=1)
    
    # Set the gridding interval: here we use the major tick interval
    myInterval=100.
    loc = plticker.MultipleLocator(base=myInterval)
    ax.xaxis.set_major_locator(loc)
    ax.yaxis.set_major_locator(loc)
    
    # Add the grid
    ax.grid(which='major', axis='both', linestyle='-')
    
    # Add the image
    ax.imshow(image)
    
    # Find number of gridsquares in x and y direction
    nx=abs(int(float(ax.get_xlim()[1]-ax.get_xlim()[0])/float(myInterval)))
    ny=abs(int(float(ax.get_ylim()[1]-ax.get_ylim()[0])/float(myInterval)))
    
    # Add some labels to the gridsquares
    for j in range(ny):
        y=myInterval/2+j*myInterval
        for i in range(nx):
            x=myInterval/2.+float(i)*myInterval
            ax.text(x,y,'{:d}'.format(i+j*nx),color='w',ha='center',va='center')
    
    # Save the figure
    fig.savefig('doggy.tiff',dpi=my_dpi)
  • 相关阅读:
    Codeforces Round #470 (rated, Div. 2, based on VK Cup 2018 Round 1)C. Producing Snow
    day69 Django--Form组件
    day68 Django--中间件
    day67 Cookie&Session
    day66 AJAX
    day62 Django框架--视图系统&路由系统
    day65 django--ORM3
    day63 django--ORM
    Day64 django--ORM2
    Day61 Django框架--模板语言2
  • 原文地址:https://www.cnblogs.com/tszr/p/12232603.html
Copyright © 2020-2023  润新知